CHAPTER 2

Predictions and Projections:
Some lIssues of
Research Design

“There will be no nuclear war within the next fifty years.”
“In the period 1965-70, Mao Tse-tung and De Gaulle will die.”

“Major fighting in Viet-Nam will peter out about 1967; and most
objective observers will regard it as a substantial American victory.”

“In the United States Lyndon Johnson will have been re-elected
in 1968.”

—TIthiel de Sola Pool?

Introduction

Projections of the future can be useful or embarrassing,
depending on their accuracy. The assumption that a wide range of
factors remain constant or continue to change at current rates can
quickly crumble.? And yet how imbedded in our thought is the idea
that the future is a straightforward projection of the past: we may
doubt the optimism of Professor Pool’s first prediction if only because
of the failure of the other predictions on the list. At least, unlike
some predictions, these have the modest virtue of being explicit, and
it is easy to tell whether they went wrong.?

!“The International System in the Next Half Century,” in Daniel Bell, ed.,
Toward the Year 2000: Work in Progress (Boston: Beacon Press, 1967), pp. 319-20.

2A very useful discussion of the assumptions behind many projections is
Otis Dudley Duncan, “Social Forecasting—The State of the Art,” The Public Interest,
no. 17 (Fall 1969), 88-118.

30n previous prophecies, see Arthur M. Schlesinger, “Casting the National
Horoscope,” Proceedings of the American Antiquarian Society, 55 (1945), 53-93.
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Almost all efforts at data analysis seek, at some point, to generalize
the results and extend the reach of the conclusions beyond a particular
set of data. The inferential leap may be from past experiences to
future ones, from a sample of a population to the whole population,
or from a narrow range of a variable to a wider range. The real
difficulty is in deciding when the extrapolation beyond the range
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Observed range of experience
with X

FIGURE 2-1 Problem of simple extrapolation

Q: Should the fitted line be extended to predict the value y’ for
the new observation x’ (which is outside the range of previous
experience with the x-variable)? Or, is A or B a better model?

A: “A priori nonstatistical considerations . . .”

of the variables is warranted and when it is merely naive. As usual,
it is largely a matter of substantive judgment—or, as it is sometimes
more delicately put, a matter of “a priori nonstatistical considerations”
(Figure 2-1).

If the observed variation in a variable is small relative to its total
possible variation, then the extension of the inference based on a
narrow range of observations is less warranted than extrapolation
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based on a wider range of observed variations. Equally obvious is
the observation that the risk of error is less if the extrapolated value
is “close” to the previous pattern of experience rather than greatly
different, other things being equal. In some cases it may be useful
to conduct trial runs at extrapolation by using a fraction of the available
data to produce a fitted curve, using the remaining data to test the
accuracy of the extrapolated results. Obviously if the conditions
governing a relationship change in relevant respects, the effort at
extension of results is in danger of making errors.

Simple extrapolation involves the extension of results outside the
range of experience of a single describing variable. A more subtle
situation arises in the multivariate case involving extrapolation beyond
the range of the combination of experience jointly observed in two
or more describing variables. Karl A. Fox has described this situation
as “hidden extrapolation.”*

Figure 2-2 shows the pattern of correlation between two describing
variables. Assume these two describing variables, X, and X,, are
used in combination to predict a response variable, Y. The situation
appears to be relatively satisfactory because there is a wide range
of experience with both X, and X,. But note how little experience
there is concerning certain combinations of X, and X,—since all
the points representing joint occurrences of X, and X, are contained
in the narrow band surrounding the line. There is no experience
with combinations such as low X,-high X, (in the upper left of the
rectangle) or high X,-low X, (lower right) and how such unobserved
combinations of X, and X, might affect the response variable. The
response variable may behave very differently for such combinations
of X, and X,. Thus a prediction equation, predicting Y from X,
and X,, may be quite misleading if applied to situations in which
X, and X, occur in combinations different from those observed here.

Thus the extension of the inference over all combinations of X,
and X, may founder on the possibility of an interaction effect between
X, and X, in their influence on Y in the region of the combinations
with which there is no experience. The problem arises because of
limited experience with the joint relationship of X, and X,, even
though there may be extensive experience with the entire range of
each variable taken singly. Thus the name, “hidden extrapolation.”

The problem arises in any predictive study involving correlated
describing variables. Figure 2-3 shows the narrowed range of joint
experience in the case of three correlated describing variables.

We diagnose the problem by considering the scatterplots of the

4This discussion is based on Karl A. Fox, Intermediate Economic Statistics
(New York: Wiley, 1968), pp. 265-66.
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FIGURE 2-2 Correlation between two describing variables

relationships between the describing variables and by looking over
the original joint observations. Cures for the difficulty include the
collection of additional data, particularly of “deviant cases” in areas
outside the previously experienced combinations of describing vari-
ables.

Let us now turn to several examples illustrating and evaluating
methods of prediction. These case studies show different statistical
tools in action. Note, however, that the central consideration in most
cases is the research design, rather than the mechanics of using the
statistical tool. Mosteller and Bush make this point quite sharply:

We first wish to emphasize that formal statistics provides the
investigator with tools useful in conducting thoughtful research; these
tools are not a substitute for either thinking or working. A major
goal for the statistical training of students should be statistical
thinking rather than statistical formulas, by which we mean specifi-
cally: thinking about (1) the conception and design of the study
and what it is that is to be measured and why, (2) the definitions
of the terms being used, and how modifications in definition might
change both the outcome and the interpretation of a study, (3) sources
of variation in every part of the study, including such things as
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individual differences, group and race differences, environmental
differences, instrumental or measuring errors, and intrinsic variation
fundamental to the process under investigation. In no circumstances
do we think that sophisticated analytical devices should replace clean
design and careful execution, unless very unusual economic consider-
ations arise. However, it may be worth remarking that crude data
collected as best the investigator could may require the most advanced
statistical tools. Here a quotation from Wallis may be appropriate:

In general, if a statistical investigation . . . is well planned and the
data properly collected the interpretation will pretty well take care of
itself. So-called “high-powered,” “refined,” or “elaborate” statistical tech-
niques are generally called for when the data are crude and inadequate—
exactly the opposite, if I may be permitted an obiter dictum, of what
crude and inadequate statisticians usually think.”®

Describing variable X,
Joint experience
of X] ’ XQ, and X3

Describing
variable X3

Describing
variable X,

FIGURE 2-3 Range of joint experience—three describing variables

5Frederick Mosteller and Robert R. Bush, “Selected Quantitative Techniques,”
in Gardner Lindzey, ed., Handbook of Social Psychology: Vol. 1, Theory and Method
(Cambridge, Mass.: Addison-Wesley, 1954), p. 331. The passage by Wallis is found
in W. Allen Wallis, “Statistics of the Kinsey Report,” Journal of the American Statistical
Association, 44 (1949), p. 471.
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Problem in Prediction: The National
Crime Test and a Cancer Test

Assessing the quality of a prediction or extrapolation can
sometimes be a tricky matter. Consider the following example, which
reveals the interplay between the properties of the predictive device
and the tested population.

A proposal was once made that every 6-, 7-, and 8-year-old child
(a total of 13 million in all) be given psychological tests to identify
potential “criminality” in order that the supposed lawbreakers of the
future be given some sort of treatment. The proposal encountered
a storm of moral, legal, and technical criticism which led to its apparent
abandonment. One of the technical flaws, which also serves to empha-
size the moral and legal criticism of the proposal, is shown in the
following model. Assume the National Crime Test has the following
hypothetical properties:

1. It will successfully identify 40 percent of those arrested in the
future. (Unfortunately, a child’s “identification” by the NCT might
help insure his future arrest through the mechanism of a self-ful-
filling prophecy, operating with respect to the child or the police
or both. Perhaps even NCT scores would be used to convince a
jury of the guilt of the accused—thereby further increasing the
“accuracy” of the prediction.)

2. It will also correctly classify 90 percent of those children who
will not be arrested in the future.

Do these characteristics of our hypothetical NCT indicate it is a
useful predictor of criminality? It might seem so, since it does identify
four out of ten of the future “bad guys” and nine out of ten of the
“good guys.” But let us look into the errors in prediction made by
a test with these characteristics. Assuming that three percent of these
children will, later in life, commit a serious crime, we can construct
Table 2-1, which shows the predictive performance of the NCT.

The table shows the errors made in the test; let us consider the
“false positives” in which the test predicts criminality incorrectly.
The upper righthand corner of the table shows 1,261,000 false positives
compared to 156,000 correct predictions of criminality. Thus for every
correct prediction of future difficulties, there are eight incorrect ones!
In this light, such a test would be unacceptable to most people—even
though its predictive characteristics, as originally expressed, seemed
impressive. Furthermore, the assumptions we made about the predic-
tive powers of such tests were, if anything, much too generous, given
the poor performance of psychological tests of “criminality.”
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TABLE 2-1
Hypothetical (Fortunately) National Crime Test

Reality
Criminal Noncriminal
Criminal 156,000 1,261,000
Test predicts
Noncriminal 234,000 11,349,000
390,000 12,610,000

Total = 13,000,000

COMPUTATIONS:

3 percent of 13,000,000 children will commit a serious crime:
(.03)(13,000,000) = 390,000 children. NCT accurately predicts 40 percent:
(.40)(390,000) = 156,000

97 percent of 13,000,000 are not future criminals:
(.97)(13,000,000) = 12,610,000. NCT accurately predicts 90 percent:

== — 2

(.90)(12,610,000) = 11,349,000.

Consider another example of the same problem. A hypothetical
test for cancer has the following characteristics:

1. Pr(test positive | cancer) = .95. This conditional probability
indicates that the test reads “positive” 95 percent of the
time given that the person tested in fact has cancer.

2. Pr(test negative | no cancer) = .96.

In other words, the test correctly identifies, on the average, 95
out of 100 of those who do have cancer and also 96 out of 100 of
those who do not have cancer. These characteristics give the following
table of probabilities:

Reality
Cancer No cancer
Positive .95 .04
Test predicts
Negative .05 .96
1.00 1.00

Now assume that one percent of those tested actually do have cancer;
that is, Pr(cancer) = .01. (This is an unconditional probability, since
it depends upon no given prior condition.) Note that since only one
percent of those tested have cancer, the flow of those tested is mainly
down the righthand column of the table of probabilities.

What proportion of false positives (and false negatives) will be
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TABLE 2-2
Computation of Probabilities

We have the following data:
Pr(cancer) = .01
Therefore Pr(not cancer) = 1.00 — .01 = .99.
Similarly,
Pr(test positive | cancer) = .95, and therefore
Pr(test negative | cancer) = .05.

Also,
Pr(test negative | no cancer)
Pr(test positive | no cancer)

.96, and therefore
.04.

The problem is to compute Pr(cancer | test positive), which equals, by
Bayes’ theorem:

Pr(test positive | cancer) Pr(cancer)

Pr(test positive | cancer) Pr(cancer) + Pr(test positive | not cancer) Pr(not cancer)
(.95)(.01)

= _ 9
(.95)(.01) + (.04)(.96)

produced by the test? One way to answer with respect to false positives
is to compute Pr(cancer | test positive)—the probability that a person
has cancer, given that the test reads positive. This can be done, using
the appropriate equations for conditional probabilities, shown in Table
2-2. Another way to handle the problem is to consider what happens
when, say, 10,000 people are screened for cancer using the hypothetical
test. Computations analogous to those in Table 2-1 yield the following
expected results:

Reality
Cancer No cancer
Positive 95 396
Test predicts
Negative 5 9,504
and therefore
- 95
Pr(cancer | positive) = ———— = .19
95 + 396

Thus about 19 percent of those indicated positive will actually have
cancer; 81 percent of the positives will be false. The decision whether
this is a good test depends upon the cost of such false positives and
their consequent detection as well as the benefits that derive from
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the detection of the disease. Perhaps such a test would be most useful
as a screening device to indicate patients needing further tests.

Similar arguments apply to the use of lie detectors, the prediction
of juvenile delinquency on the basis of family background, and the
use of “preventive detention.”® The reason the original qualities of
the prediction seem to collapse when the test is applied to data is
that, in these two cases, the quality to be detected is rather rare.
Therefore, even though the hypothetical cancer test correctly predicts
cancer 95 percent of the time and noncancer 96 percent of the time,
so many people (99 percent in our example) flow through the right
(noncancer) side of the table of probabilities that even the low error
rate (4 percent) produces a large number of errors relative to the
number of correct predictions of cancer. If, on the other hand, half
the tested population had cancer, then the expected table (for 10,000
people) would be:

Reality
Cancer No Cancer
Positive 4750 200
Test predicts
Negative 250 4800

This is pretty sensational predicting!

The properties of the test are the same in both cases, but the
populations tested differ with respect to the distribution of the
characteristic to be detected. Thus a test which does a good job of
prediction on one population may not perform so well on a second
trial if distribution of the characteristic sought differs markedly in
the second population. Thus it will be worthwhile to try out—if only
by working through the arithmetic as we have done here—the test
on a population for which the distribution of the characteristic to
be predicted is the same as the population for which the ultimate
prediction is to be made. Note that the two numbers Pr(positive |
cancer) and Pr(negative | not cancer) were not enough to describe
adequately the performance of the prediction. Instead, a third piece
of information, in this case Pr(cancer), was necessary to permit an
adequate assessment of the performance of the test for that population.

6See Jerome H. Skolnick, “Scientific Theory and Scientific Evidence: An
Analysis of Lie-Detection,” Yale Law Journal, 70 (April 1961), 694-728; and Travis
Hirschi and Hanan C. Selvin, Delinquency Research (New York: Free Press, 1967),
chap. 14.
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Finally, some very high rates of successful “prediction” should not
fool us. After all, we can achieve 99 percent “accuracy” simply by
predicting that no person has cancer. Since 99 percent of the people
in our example don’t have cancer, the rule is 99 percent “accurate”
in a sense, although next to worthless medically.

Election-Night Forecasting

Each election night, when the polls have closed and the votes
are being counted, the three television networks forecast the electoral
outcome on the basis of early, partial returns—often needing only
a few percent of the vote to predict accurately the final outcome.
The networks invest millions of dollars in their electoral coverage,
which allows their viewers to learn the results of the election several
hours earlier than they might otherwise. Although this is perhaps
a small yield for the investment, the scramble for early returns needed
for the projection of the winner might, in some places in some elections,
discourage corrupt election officials from greatly altering the real
count of the vote—since the pressure of getting the vote count in
may reduce the time needed to fix the returns.

For example, pressures for a timely count may curb such abuses
as those in Illinois in the 1968 tabulation:

For days before the election, the Chicago papers were full of tales
of heavy crops of bums and derelicts being registered in West Side
flophouses to provide the names for a fine Democratic turnout. And
suspicion became certainty in the pressrooms. . . when it was learned
that “computer breakdowns” and “disputed vote counts” were holding
the Illinois decision back. Veteran reporters could be heard explaining
. . . how the game was played in Illinois: how both the iron Mayor
and his Republican enemies downstate would “hold back” hundreds
of precincts in an effort to finesse each other to give a hint of the
size of the total they had to beat; how they would release a few
precincts7 as bait to lure the other man into giving away some of
his. . . .

This suggests that the count of the vote is a rather unusual statistic.
For most social and economic indicators, there is a tradeoff between
timeliness and accuracy: the quicker we get the information, the
greater the error. Sometimes the making of economic policy has been
based on very short-run economic statistics—with a resulting reliance

7Lewis Chester, Godfrey Hodgson, and Bruce Page, An American Melodrama:
The Presidential Campaign of 1968 (New York: Viking, 1969), pp. 760-61.
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on less accurate statistics—and more accurate figures might well
have produced a different policy. In contrast to the usual case, however,
a slow count of the vote often indicates vote fraud, or at least the
opportunity for vote fraud.®

Although they may, in passing, reduce vote fraud, the central concern
of the networks is to forecast the winner of the election (and,
secondarily, the winner’s share of the vote) on the basis of scattered
and very incomplete returns. Two methods, both interpreting early
returns with reference to a historical baseline drawn from previous
elections, have been favored: (1) comparison of tonight’s returns with
the returns from previous elections at the same stage of the count
and (2) comparison of tonight’s returns from various counties with
the returns from previous elections from those same counties.

The first method begins by constructing, on the basis of a previous
election, a curve showing the relationship between the proportion
of the vote reported and the proportion of the reported vote for the
Democratic (or Republican) candidate. Figure 2-4 shows one such
pattern, indicating that in this case a Democratic candidate who has
more than about 40 percent of the vote when less than about 70
percent of the vote has reported can expect to win rather easily when
all the returns are in. Such a pattern might result from the early
reporting of certain Republican areas and a slower count in heavily
Democratic areas. Thus the curve—called a “mu curve”—helps adjust
for the bias favoring one party or the other in the sequence of early
returns. Figure 2-5 indicates how this might be done. Tonight’s returns
are compared with the historical pattern of reporting, an appropriate
adjustment for reporting bias is made, and the final projection is
put on the air. In practice, the method is fancied up a bit—but still
its basic defect persists: it relies on the assumption that the order
in which the vote is reported remains the same from election to election.
This assumption has led to several predictive disasters, and now mu
curves only supplement other, more solidly based techniques.

One such predictive botch occurred during an election when a heavily
Republican state first introduced voting machines. As a result, that
state’s flood of Republican ballots came in hours earlier than usual;
the mu curve, believing that these were the same votes it saw in
each election every four years, quickly projected a Republican landslide
for president. Hours and hours later, John Kennedy won one of the
closest presidential contests in history.

8The problem of inaccurate counts of the vote is not unimportant; political
observers guess that two or three million votes are stolen, miscounted, or changed
in a U.S. presidential election. Nobody has a good guess about the partisan advantage,
if any, resulting from stolen votes. The advantage differs by state.
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FIGURE 2-4 Historical pattern of the vote as more and more precincts
report their returns on election night

Some practitioners patch up their mu curves by taking into account
expected changes in the order of reporting:

In deriving mu curves which are empirical in nature—they have
to be—one must take into very careful consideration whether or
not there have been any changes in voting patterns resulting from
voting machines, or changes in poll closing times. Where there are
such changes—and in every election we find that there are some—the
mu curves have to be suitably adjusted in order to render them
suitable.®

This sort of repair requires knowledge in advance of those changes
in election procedures that might affect the sequence of the vote
report—and must then guess how much earlier or later the affected
returns will show up in the reporting sequence. The method also
rests on the fragile hope that the patched-up curve traced out by
tonight’s returns will flow parallel to the historical curve—an assump-
tion that will not hold up if there is a differential shift in particular

9Jack Moshman, “Mathematical and Computational Considerations of the
Election Night Projection Program,” paper presented at the Spring Joint Computer
Conference in Atlantic City, N.J., on May 2, 1968, p. 3.
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areas to a particular candidate. For example, if areas that normally
report late and also normally vote somewhat Democratic suddenly
shift very strongly toward the Democratic candidate because of that
candidate’s special appeal in those areas, then the paths traced out
by the historical curve and tonight’s curve would not be parallel,
and the projection might be wrong. Finally, the method does not
easily accommodate new political factors, such as a third-party candi-
date.

Because of these limitations and the availability of more powerful,
more inferentially secure methods, mu curves are not now widely
used in electoral projections, although they do retain some utility
for informal use in interpreting election returns. That utility comes
from the limited insight upon which mu curves are based: that different
areas, with different voting patterns, report their returns at different
times on election evening. Of course we knew that anyway.

The second—and preferred—forecasting method compares tonight’s
returns from those counties (or wards, precincts, or the like) that
have reported early with the returns from previous elections in those
same counties. The adjustment of current returns by previous per-

Final projection, given
tonight's returns and

assumption that historical
pattern continues

~N
&
T

Tonight's returns
° \.

N
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T

Democratic share of vote based
on the precincts that have reported
I
<)

| 1 1 1
25 50 75 100

Percent of precincts having reported

FIGURE 2-5 Comparing tonight’s returns with the historical pattern
to make a projection
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formance at a disaggregated level (that is, at the county level) requires
more detailed data and analysis than the mu-curve method—but it
yields far more inferentially secure results. That is, there is a good
chance that we know more after having done the analysis than we
did before.

Comparing tonight’s returns from a county with its previous voting
patterns takes into account that the counties reporting first are not
a representative sample. Counties with early complete returns may
tend, in some states, to be Republican counties; in others, Democratic
counties. At any rate, why hope they are typical or representative?
Comparing current returns with old returns will adjust or control
for a county’s normal political leanings. For example, the raw returns
from Massachusetts are not very helpful in projecting the national
winner in a presidential race; but such returns are helpful if we
know that Massachusetts normally runs heavily Democratic. So, if
the Democratic candidate barely leads in Massachusetts, then that
candidate is surely in real trouble nationwide.

Note the assumption here that the shift or the swing toward one
party is roughly the same over the whole state or the whole nation.
This assumption will not however lead to disaster—because it can
be checked on election night with the data in hand simply by comparing
the shifts across the counties that have reported. If the shifts are
not consistent across counties, then either the historical base values
from previous elections for the counties are ill-chosen and inappropriate
for judging the pattern of tonight’s election, or else the candidates
had a special appeal to certain groups clustered by region and the
shifts are not the same for different parts of the country. In contrast,
violations of assumptions behind the mu-curve method are not easily
discovered—at least in the short-run on election night.

Thus the second projection method is somewhat more powerful and
safer than the use of mu curves because its assumptions are more
modest and because some of its important assumptions can be verified
during the course of the analysis. The second method does, however,
require much more data and computing power; the grand assumptions
of the mu curves are replaced by the collection and analysis of data.

In practice, the final projection of the election consists of a combina-
tion of several separate projections. This mixture forming the final,
aggregate projection melds several component projections together:

1. the projection from the method of county-adjusted returns:
%D, = percent Democratic projected from counties;

2. the projection resulting from the so-called “key precincts,” which
are chosen either randomly or because of their special political
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interest: %D, = percent Democratic projected from key precincts;

3. the projection of the race before any returns are in at all, called
a “prior’—a projection based on pre-election polls or political
judgment: %D , = prior projection of percent Democratic.

How much of each projection is mixed into the overall combined
or “meld” projection? The prior, of course, receives full weight when
no returns are in; as the returns pile up, the prior should carry less
and less weight in the meld projection. Figure 2-6 shows one such
weighting plan, with the weight, w(r), a function of the number
of precincts reporting. How should the other factors, %D_ and %D,,
be weighted in the grand meld projection? Statisticians have a standard
answer: form a weighted average using the reciprocal of the variances
for weights.

Reciprocal weights are a reasonable choice—for, if the variance
of an estimate is big, the weight should be small; if the variance
of the estimate is small, then the estimate should have a relatively
heavy weight and count for more because we have that estimate
more precisely pinned down. Weighting by reciprocal variances gives,
under ideal circumstances, the most precise combination. For the

When no returns are in on
1006 / election night, the prior
equals the meld--that is,

the prior receives 100%
of the weight

[$2]
o

Weight on the prior
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N
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1 ] I !
0 25 50 75 100

Percent precincts reporting

FIGURE 2-6 Weighting the prior in the overall meld
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realities of election night, less simple combinations may be important.
At any rate, one possible meld is the weighted average (weighted
by the reciprocal of the variances) of the component projections:

1 1
o %D, + 5 %D, + w(r) %D,
meld projection = — N k I
— + — + w(r)
St Sk

where S2 and S} are the variances of the estimates of %D, and
%D, . This is simply the particular realization of the general formula
for a weighted average:

) sum of weighted components X w;x;
weighted average = - =
sum of weights Zw,;

Although based on the principles we have looked at here, con-
temporary projection models include many additional complications—
complex estimation procedures, specially tailored base values, checks
for bad data, and estimates of turnout. While today’s elaborate models
must be entirely computer based, in past years the votes were tabulated
by hand on adding machines. Some years ago, the story has it, the
truck delivering the dozens of rented adding machines to the studio
on election day never arrived. Momentary panic arose, for how could
they tabulate all the separate vote reports about to start pouring
in? Finally, someone discovered a quickly available substitute for
the adding machines. That night, ignoring the heavy-handed symbol-
ism, they rang up the vote for president on cash registers!

Our next example evaluates another device for electoral forecast-
ing—the “bellwether” district.

Bellwether Electoral Districts'®

Time present and time past
Are both perhaps present in time future,
And time future contained in time past.

—T. S. Eliot, Four Quartets*

0This section was co-authored with Richard A. Sun.
*From Four Quartetsby T. S. Eliot. Reprinted by permission of the publishers,
Harcourt Brace Jovanovich, Inc. and Faber and Faber Ltd.
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Prior to the 1936 presidential election, the conventional political
wisdom had it that as Maine voted, so went the rest of the nation.
After the 46-state landslide, James Farley, Roosevelt’s campaign
manager, revised the theory: “As goes Maine, so goes Vermont.” Such
is perhaps the inevitable fate of so-called bellwether or barometric
electoral districts; still, there are always new contenders with markedly
unblemished records of retrospective accuracy to replace wayward
bellwethers. Given the familiar inferential caution that retrospective
accuracy provides little guarantee of prospective accuracy, what is
the worth of claims that certain districts invariably reflect the national
division of the vote?

The answers at hand differ: a skeptical statistician probably has
little faith in the after-the-fact predictive success of bellwether
districts; the collector of political folklore marvels at the record of
such byways as Palo Alto County (Iowa) and Crook County, (Oregon)
which have voted for the winner of every presidential election in
this century; the newspaper reporter interviews a few citizens of Palo
Alto or Crook County in search of “clues as to what will happen
next Tuesday”; and Louis Bean has written four books premised on
the notion that as goes X, so goes the country.'! Here we will examine
the question more deeply—and, at the same time, see a number of
fundamental statistical techniques in action.

The data for the analysis are the election returns from almost
all 3100 U.S. counties for the fourteen presidential elections from
1916 to 1968.'> We will be looking for what are called “all-or-nothing”
bellwethers: the county either votes for the winner of the presidential
election or it does not. This seems to be the usual meaning of “bellwether
district”; most discussions of supposed bellwethers report that the
district has voted with the winner in the last N elections. Sometimes

1 Ballot Behavior (Washington, D.C.: Public Affairs Press, 1940); How to
Predict Elections (New York; Knopf, 1948) How America Votes in Presidential Elections
(Metuchen, N.J.: Scarecrow Press, 1968); and How to Predict the 1972 Election (New
York: Quadrangle, 1972).

12The data tapes were made available through the Inter-University Consortium
for Political Research. We edited them extensively, correcting errors and adding missing
data. Of the 3070 counties in the United States, we have the complete two-party
election returns for the fourteen elections from 1916 to 1968 for 2938 counties, or
96 percent. The remaining counties had to be dropped because one election in the
fourteen election series was missing; others may have changed names or are mixed
in with other political units. A listing of the missing counties and election years
was reviewed both before and after our analysis; both times it appears that the small
amount of missing data had no consequences for our findings. Some of our early
computations carried along votes for four different parties in each county, but we
finally edited the data to include only the returns for the two major parties. Therefore
all election returns reported here are based on the votes of the two major parties
in all the elections.
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N is surprisingly small; some journalists have interviewed nonran-
domly selected citizens of “bellwether” communities that have voted
for the winner in only three or four previous elections.

One good test of the credibility of bellwethers is to conduct a series
of historical experiments, each designed to answer the question: How
well would we have done in predicting the election of 19XX if we
had followed a group of supposedly bellwether counties chosen on
the basis of past elections before the election of 19XX? For example,
going into the 1968 election, there were 49 counties that had voted
for the winner in every presidential election since 1916—thirteen
elections (or more) in a row with the winner. Were these 49 retrospective
bellwethers more likely than other counties to support the winner
in 1968? This is the sort of question that we will answer over and
over, for different elections and for different choices of historical
bellwethers.

Since they directly answer the question at hand, the historical
experiments seem to provide the most powerful means of assessing
the credibility of bellwethers. It is also possible to construct probability
models to provide a baseline or null hypothesis against which to
compare the observed performance of reputed bellwethers. We met
with little success in developing models based on reasonable assump-
tions. The construction of a useful probability model remains an open
question, although we suspect that even a very good model would
still not provide as direct and powerful test of bellwethers as the
historical experiment.

Another statistical problem arises because bellwethers are found
in an after-the-fact search through election returns; there is no theory
identifying particular areas as potential bellwethers before the fact.
We have then a situation analogous to that of “shotgunning” in survey
research: the searching through of a large body of data for statistically
significant results leads to difficulties in just how to include the
fact of the search in an adjusted significance test. One answer is
simply the independent replication on a fresh collection of data of
the results found through searching. That is, of course, the underlying
logicof the historical experiment: bellwethers are chosen from a search,
and then we see if their bellwether performance is replicated in the
historical future.

The usual technique for evaluating bellwethers is retrospective
admiration of the historical record. Almost all written accounts of
reputed bellwethers describe an area’s lengthy record in voting for
winners and then ask, in effect, “Isn’t that something?” These accounts
evaluate the predictive performance of the past without reference
to either prospective accuracy or the predictive record of other areas.
Consider excerpts from a typical New York Times story on bellwethers:
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Town Votes 'Em As It Sees 'Em
And It Usually Sees 'Em Right

Salem, N.J., April 8—The political professionals are keeping an
eye on this small Quaker community in southern New Jersey for
clues to the outcome of the presidential election.

For fifty years, with only two exceptions, Salem has voted for
the victorious Presidential candidate. . . .

There is no clear reason for Salem’s stature as an election indicator.

“But,” says County Clerk Thomas J. Grieves, “you can’t call it
chance or a quirk. It happens too often. . . .”13

Actually, there are several hundred counties with predictive records
better than Salem’s over the last fifty years. But the important point
is that no evaluation of Salem’s record can be made on the basis
of past election returns from Salem alone. A bellwether’s credibility
can only be assessed by examining, in comparison to other districts,
its predictive record and not merely its postdictive record.

Consider the following historical experiment: let us choose the
counties with the best records for predicting presidential elections
from 1916 to 1964 and see how well they predicted the outcome of
the 1968 election. There were 49 such counties with records of
supporting the winner in all 13 elections from 1916 to 1964. Such
a record, by almost any standard, is a bellwether performance—if
the counties had been identified in 1916 instead of after the fact.
How well did the 49 retrospective bellwethers of 1916-1964 do in
predicting the winner in 19687 Not very well at all; 27 of the 49
(or 55.1 percent) voted with the winner in 1968. Two-thirds of all
counties supported the winner in 1968, and so a county chosen at
random could typically have been expected to outpredict the counties
with previously perfect predictive records. Table 2-3 shows the full
array of results, with the 1968 predictive performance tabulated
against the prior record of predictive accuracy. Oddly enough, the
best predictions in 1968 were made by counties that had had the
worst record in the past (5 right, 8 wrong). These 80 counties (that
went 100 percent for the winner in 1968) were, of course, counties
that had voted without fail for the Republican candidate in every
previous election since 1916 and persisted in 1968. So it is easy to
find a group of counties, identified by their past voting record, that
will support the upcoming winner—if you only know how the election
is going to turn out!

The election of 1968 was a particularly bad year for the bellwethers
of the past. Table 2-4, repeating the tests for the presidential elections
from 1936 to 1964, shows that for some elections the bellwethers

13The New York Times, April 9, 1964, p. 29.
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TABLE 2-3
Predictive Performance from 1916 to 1964 Compared with Predictive Record
in 1968 Election

Past Performance, 1916-1964 1968 Performance

Past Predictions Counties Right Wrong
Per-
Right Wrong Number Percent Number Percent Number cent
0 13 0 0.0 0 0.0 0 0.0
1 12 0 0.0 0 0.0 0 0.0
2 11 0 0.0 0 0.0 0 0.0
3 10 0 0.0 0 0.0 0 0.0
4 9 0 0.0 0 0.0 0 0.0
5 8 80 2.7 80 100.0 0 0.0
6 7 229 7.8 209 91.3 20 8.7
7 6 502 17.1 303 60.3 199 39.6
8 5 708 24.1 424 59.9 284 40.1
9 4 554 18.8 397 71.6 157 28.3
10 3 380 129 251 66.0 129 33.9
11 2 274 9.3 148 54.0 126 45.9
12 1 162 5.5 97 59.9 65 40.1
13 0 49 1.6 27 55.1 22 44.9
2938 100.0 1936 65.9 1002 34.1

of the past do predict the upcoming election somewhat more accurately
than a typical county.

Tables 2-3 and 2-4 provide us with a great deal of experience with
retrospective all-or-nothing bellwethers. The tables suggest:

1. Perhaps each time one hears of an area with a spectacular
predictive record in the past, a glimmer of hope and curiosity arises
suggesting that surely this fine record couldn’t be mere chance—there
must be something going on. Whatever that something might be,
it isn’t a high degree of prospective accuracy. Sometimes previously
accurate districts do better than just any collection of districts;
sometimes they don’t. The retrospective bellwethers were particularly
poor in the close elections of 1960 and 1968. The compilations of
Table 2-4 show the erratic record of the retrospective all-or-nothing
bellwethers in predicting the future.

2. We have identified “bellwethers” in Tables 2-3 and 2-4 by their
previously perfect predictive records in at least six consecutive previous
elections. If this standard is applied to judging the results of our
historical experiment, then the bellwethers of the past are not the
bellwethers of the present. In five of the eight elections, the previously
bellwether counties had a higher probability of voting with the winner



TABLE 2-4
Predictive Record of Previously Accurate Counties in Presidential Elections,

1940-1964
PREDICTING 1940 Number of Percent voting with
counties winner, 1940

1916-1936 past
performance, 602 52.9
right-wrong = 6-0

Nationwide 2938 61.6
PREDICTING 1944 Number of Percent voting with
counties winner, 1944

1916-1940 past
performance, 319 72.7
right-wrong = 7-0

Nationwide 2938 55.3
PREDICTING 1948 Number of Percent voting with
counties winner, 1948

1916-1944 past
performance, 232 87.5
right-wrong = 8-0

Nationwide 2938 59.9
PREDICTING 1952 Number of Percent voting with
counties winner, 1952

1916-1948 past
performance, 203 81.3
right-wrong = 9-0

Nationwide 2938 68.3
PREDICTING 1956 Number of Percent voting with
counties winner, 1956

1916-1952 past
performance, 165 87.3
right-wrong = 10-0

Nationwide 2938 70.0
PREDICTING 1960 Number of Percent voting with
counties winner, 1960

1916-1956 past
performance, 144 354
right-wrong = 11-0

Nationwide 2938 38.6
PREDICTING 1964 Number of Percent voting with
counties winner, 1964

1916-1960 past
performance, 51 96.1
right-wrong = 12-0

Nationwide 2938 73.3

51
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than a county chosen at random from the nation as a whole; in the
other three elections (1940, 1960, and 1968), a county chosen at random
would be the county of choice in predicting the upcoming election.

3. The retrospective bellwethers, taken as a group, correctly predict-
ed seven of the eight trial elections—in the sense that a majority
of the group of retrospective bellwethers supported the winner. Exactly
the same was true of a group of randomly selected counties (within
the limits of sampling error).

4. There were, alas, no anti-bellwether counties. No county had
such an outstandingly poor record that it could serve, by reversing
its preferences, as a predictive (or even postdictive) guide.

5. Tables 2-3 and 2-4 indicate clearly why one obvious probability
model, the binomial, for all-or-nothing bellwethers does not provide
a useful baseline. Consider the following: if a fair coin, labeled
“Democratic candidate will win” on one side and “Republican candidate
will win” on the other, were tossed prior to each of the last 14
presidential elections, the probability that the coin would successfully
predict the winner of all 14 contests is

1\*" 1
(—) = = .000061.
2 16,384

If this toss of the coin were performed in each of the 3100 counties,
then it would be expected that

(.000061) (3100) = 0.2 counties

would correctly go along with the winner 14 elections in a row. More
generally, the binomial model for k successes in 14 independent trials
with probability of success equal to one-half generates the distribution
of predictions shown in Figure 2-7. The actual distribution of counties
is also shown in the figure. It is clear that the distribution of actual
election outcomes is not generated by a process of 14 independent
trials with probability of success equal to one-half. That is because
the probability of success usually substantially exceeds one-half and
the trials are, in fact, highly dependent. The chances that a given
county votes with the winner is usually around two-thirds, as Tables
2-3 and 2-4 show.

A more difficult problem in constructing a probability model is
that the election results are not independent over space and time:
both the interelection and intercounty correlations are very high.
For example, the correlation between the division of the vote from
one election to the next over all counties is almost always greater
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FIGURE 2-7 Binomial and actual outcome distributions

than .90. Considering that a county could go either Democratic or
Republican in each of the 14 elections yields 2'* = 16,384 theoretically
possible electoral histories or paths that the counties could have
followed over the 56 years. Less than 400 of these electoral histories
actually occur, and only about 30 contain more than a handful of
counties. At least 40 percent of all counties have gone more or less
straight Democratic or straight Republican with occasional deviations
in landslide years (Table 2-5).

TABLE 2-5
Most Frequently Occurring County Electoral Histories, 1916-1968

History Number of counties
Straight Democratic 200
Democratic, except 1964 160
Democratic, except 1968 54
Democratic, except 1964 and 1968 58
Straight Republican 79
Republican, except 1964 128
Republican, except 1932, 1936, and 1964 136
Republican, except 1916, 1932, 1936, and 1964 155
Followed nation, all elections 27

Followed nation, except 1960 68
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6. Twenty-seven of the nation’s 3100 counties voted for the winner
inevery presidential election from 1916 to 1968. It may be possible—or
at least a firm believer in bellwethers might well argue—that there
are some truly bellwether districts hidden in those counties. What
we have shown, of course, is only that counties with perfect postdictive
records have undistinguished predictive records—when those counties
are taken as a group. The only way we can identify bellwethers is
as members of such a group. One final shred of evidence is to consider
the performance of the nation’s finest bellwethers. Prior to the 1960
election, there were eight counties in the nation with records of
supporting every winner in this century. After 1968, only three of
these eight superbellwethers still had unblemished records: Crook
County, Oregon; Laramie County, Wyoming; and Palo Alto County,
Iowa. They remained accurate in 1972.

Our conclusion in the case of all-or-nothing bellwethers is clear:
the usual concept of a bellwether electoral district has no useful
predictive properties. The all-or-nothing counties are only a curiosity
and probably should be forgotten. It is a waste of time to send reporters
out to interview nonrandomly selected citizens of Crook County a
week or two before the election—at least it is a waste of time from
any sort of scientific point of view. Such news reports create mystery
where little exists.

There perhaps remains a magical air about the bellwethers of the
past; some of these districts, considered- individually, seemingly have
such phenomenal records and yet we know better than to take them
seriously—but still. . . . It may be best to look not to the election
returns for the source of the mystery, but rather to ourselves. Maugham
once wrote:

The faculty for myth is innate in the human race. It seizes with
avidity upon any incidents, surprising or mysterious, in the career
of those who have distinguished themselves from their fellows, and
invents a legend to which it then attaches a fanatical belief. It is
the protest of romance against the commonplace of life.!*

14Somerset Maugham, The Moon and Sixpence (Harmondsworth, Middlesex,
England: Penguin Books, 1941), p. 7.
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Regression Toward the Mean: How
Prior Selection Affects the Measurement
of Future Performance

Consider the defects in research design in the following
example:

Students in a statistics course who needed remedial teaching (as
indicated by their performance in the lower quartile of an achievement
test in arithmetic) were assigned to a special class in sensitivity
training. Soon the teacher of the special class was able to go into
full-time educational consulting because of the success of his new
book, Ending Educational Hangups in Statistics: How Empathy Pays
Off. The book showed that the special class was strikingly effective
because when the students in the special class took the tests again
after only six months, their test scores had greatly increased—in-
creased, in fact, almost all the way up to the average of the first
test scores of all the students who initially took the arithmetic test.

Several difficulties that are common in research designs compromise
this hypothetical example.

This design uses the first test to divide the class into a treatment
group (consisting of the lower quartile of students) and a control
group (the remainder of the class). Students in the treatment group
took the same tests again six months after joining the special class.
The following comparisons were made in an effort to assess the benefits
of the special class:

1. Average “gain” for special class equals

average of scores on average of scores on
second test for special ] minus first test for special
class class

2. “Improvement” relative to rest of class equals

average of scores on average of scores for
second test for special | minus | whole class on the first
group test
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Two serious defects in the research design result in a bias in the
“gain” and “improvement” scores such that the beneficial effect of
the special class is exaggerated. The first defect is the failure to
take into account the effect of practice and maturation on the test
scores. Students taking a test a second time, as in the special class,
can be generally expected to get better at taking tests; consequently,
their scores improve merely because of their increased experience.
Similarly, since the treatment-group scores on the second test are
compared with the earlier test scores of the control group, a bias
due to the maturation of the special group results. In other words,
the students in the special group may improve relative to their previous
performance (and the previous performance of their contemporaries)
merely because they are older and smarter and not because they
are necessarily benefiting from the special class.

In this design, then, the improvements in the scores of the special
group due to practice and maturation effects are incorrectly attributed
to the effect of the special class. Although it is impossible without
additional information (or a better research design—see below) to
judge the exact strength of the bias, we do at least know its direction:
it favors the hypothesis that there is benefit from the special class.

The second defect in the research design is more subtle. It is a
version of what is called the “regression fallacy.” If members of a
group are selected because their scores are extreme (either high or
low) on a variable and if this extreme group are later tested once
again, we will generally find that the group are “more average” than
they were on the first test. Their scores will have moved or “regressed”
toward the mean. One way to view the situation is to think of the
extreme group as consisting of two sorts of people: (a) those who
deserve really to be in that group and (b) those who are there because
of random error—unlucky guesses on the test, an “off” day, and so
forth. When the extreme group is tested a second time, the group
(b) will typically perform more like their true selves, thereby raising
their scores on the average at least. The deserving extremists in
group (a) will continue their poor scores, albeit with some variation.

Thus the average score of the extreme group will typically increase
because of the more typical performance of group (b) on the second
test. There is no way of distinguishing group (a) from group (b) with
only one test.

The problem arises when any group is formed by selecting its
members because they are extreme on a single measure. For example,
let us say that the highest quartile of students were placed in the
special class instead of the bottom quartile. What would happen then?
Once again, two types of students make up the extreme top group:
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(a) those who are actually skilled and who deserve to be placed in
the top quartile and (b) those who are lucky, who guess right, and
so on. Now if this group is tested once again, it will generally be
found that the overall average of the original extreme group has
dropped somewhat—because not all the lucky performers on the first
test will be lucky again.

The fallacy occurs in all sorts of situations. Wallis and Roberts
provide several good examples including the following:

Teachers—except, of course, statistics teachers—sometimes commit
the regression fallacy in comparing grades on a final examination
with those on a midterm examination. They find that their competent
teaching has succeeded, on the average, in improving the performance
of those who had seemed at midterm to be in precarious condition.
This accomplishment naturally brings the teacher keen satisfaction,
which is only partially dampened by the fact that the best students
at midterm have done somewhat less on the final—an “obvious”
indication of slackening off by these students due to overconfidence.!®

Let us examine a numerical example of what might have happened
in the case of the special class. Make the following assumptions:

1. There are no practice or maturation effects.
2. The special class has no effect at all on the students’ test scores.

Under these assumptions we should observe no significant gains
or improvements by the special class if the research design is free
of bias. If, however, the research design has a bias, we will be able
to get at least an approximate idea of its extent. Table 2-6 shows
three sets of made-up test scores:

Column I:  The “true score” of each student on the test. This, of course,
is never actually measured perfectly, and the remaining
columns represent the true score plus some random
measurement error.

Column II: The “true score” for each student with a random number
between —20 and 20 added to each score.

Column III: Again the “true score” with another random number added
to column I.

Let the numbers in column II represent the scores of all the students
on the first test and those in column III the scores on the second
test. Since the test scores were computed by adding a random error
to the “true scores,” we find that there is very little difference in

15W, Allen Wallis and Harry V. Roberts, Statistics: A New Approach (New
York: Free Press, 1956), p. 262.
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TABLE 2-6
Random Errors Added to True Scores

I II III1
Random Observed Random Observed
True error, score, error, score,
Student score test 1 test 1 test 2 test 2

A 70 +13 83* +1 71
B 75 -20 55% +15 90
C 80 +8 88 -13 67
D 84 +7 91 -1 83
E 87 -15 T2% -9 78
F 90 +2 92 +8 98
G 93 —4 89 +12 105
H 95 -7 88 +16 111
I 96 +3 99 -12 84
dJ 97 +17 114 +20 117
K 98 -19 79* -1 97
L 99 +11 110 +5 104
M 99 —18 81* -17 82
N 100 -13 87* +3 103
(0] 100 +9 109 -7 93
P 101 +12 113 +10 111
Q 101 -0 101 -5 96
R 102 -18 84* +2 104
S 103 +13 116 +9 112
T 104 +7 111 —-15 89
U 105 +3 108 +14 119
v 107 +12 119 -7 100
w 110 -11 99 +16 126
X 113 -20 93 +5 118
Y 116 +15 131 -19 97
Z 120 +1 121 +5 125
AA 125 -2 123 -2 123
BB 130 -14 116 —-14 116

*The asterisk indicates students in lowest quartile on test 1.

the average score of the whole class on test 1 compared with test
2. Also the test seems to be measuring something: the correlation
between the tests is .51. The correlation would be perfect, if we had
not introduced the random measurement error into the true score
on each test. Furthermore, note that the variability on both tests
1 and 2 is the same.

It should be clear that all that has been done is to construct some
test scores containing some random error. No systematic effects in
the data enable one to differentiate between the results of test 1
and test 2. But let us now see what happens in the research design
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used in assessing the effects of the special class. The students in
the special class were chosen because they were in the bottom of
the class on the first test. Compare, then, the scores of the lowest
seven students in the class as measured by test 1 (Table 2-7).

This research design generates the following misleading results.
The average score of the group entering the special class was 77.3;
after attending the special class for six months, their average score
was 89.3—a “gain” of 12.0 points. Thus, because of the regression
effects operating in this research design, a pseudo-gain of 12 points
was found between test 1 and test 2, even though all the difference
between test 1 and test 2 was generated by random numbers.

Note how plausible it all seems. A group of students are selected
on the basis of test scores te enter the special class, and when the
same students are tested later, those in the special class appear to
have gained 12 points. Test 1 and test 2 are rather highly correlated,
indicating that the tests are moderately reliable. And yet it is all
a statistical artifact.

What would be a better research design—one that assesses the
effect, if any, of the special class but avoids the bias resulting from
the effects of practice, maturation, and regression toward the mean?
The essential feature of an improved research designs is that not
all of the low scorers should be placed in the special group. Ideally,
some of the low scorers on test 1 should be randomly assigned to
the special group; the others should remain in the regular class. In
evaluating the effects of the special class, then, the basic comparison
should be made between those low scorers in special class versus
those low scorers in the regular class. Regression toward the mean
still operates in this design, but its impact is roughly equal on the

TABLE 2-7
Scores on Test 1 Compared to Scores on Test 2 for the Lowest Quartile of
Students on Test 1: Pseudo-Gains and Pseudo-Losses

Difference:
“Gain” > 0
Student Test 1 Test 2 “Loss” < 0
A 83 71 -12
B 55 90 35
E 72 78 6
K 79 97 18
M 81 82 1
N 87 103 13
R 84 104 20
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control group and the treatment group because students were randomly
assigned to the two groups.

The improved design, however, does give us a chance to separate
out the genuine effects resulting from membership in the special
class from the artifactual effects deriving from practice, maturation,
and regression toward the mean. The original design confounds these
factors and throws them all into the gain score.

This example also illustrates the utility of trying out the design
and analysis on realistic but random data. Random data contain no
substantive effects; thus if the analysis of the random data results
in some sort of effect, then we know that the analysis is producing
that spurious effect, and we must be on the lookout for such artifacts
when the genuine data are analyzed.

Prediction of Accident Proneness:

Can Producers of Automobile Accidents
Be Identified in Advance as

Consumers of Traffic Violations?

Only a small number of drivers are involved in severe auto-
mobile accidents. This fact gives rise to statements like “Three percent
of all drivers produce one hundred percent of all severe accidents.”
The statement, while true, can be misleading. It does not mean that
a small group of drivers go around systematically running down people
or ramming other cars. “Accident proneness” may or may not be
a useful concept.

It is empirically true that a small number of people, not necessarily
identifiable in advance, are involved in serious accidents. Do these
people have any characteristics in common? Can we ascertain roughly
the probability that a given driver will be involved in an accident
within a certain period of time? Insurance companies already make
such predictions in a crude way by setting their rates in relation
to factors including the driver’s age, sex, marital status, accident
history, type of driving, and record of traffic violations. Such proce-
dures, at least as they are employed in Canada, are biased against
some drivers (particularly high-risk drivers) because the various
factors are not independent, resulting in double counting of risks
against some drivers. ¢

16See R. A. Holmes, “Discriminatory Bias in Rates Charged by the Canadian
Automobile Insurance Industry,” Journal of the American Statistical Association, 65
(March 1970), 108-22.
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A study of the relationship between the number of traffic violations
a driver collects and his or her involvement in accidents is threatened
by possible spurious correlations. First, one result of a motor vehicle
accident is a traffic ticket. One driver or another is found to have
committed a violation which “explains” the accident. This leads to
statements such as “Accidents are caused by excessive speed,” which
are based on evidence that in many accidents, drivers involved are
adjudged to have exceeded the speed limit. Lacking here is a comparison
group of the speed of drivers not involved in accidents. There is some
evidence that a large proportion of all drivers on the road are, in
fact, exceeding the speed limit. In any case, a first step in a study
of traffic violations and accidents is to control for the tickets produced
by accidents—at least if the task is to predict, on the basis of a
past history of traffic violations, that certain drivers will be more
likely to be involved in accidents.

A second problem of potential spuriousness is suggested by the
following model:

many miles driven

more traffic tickets more accidents

Thus, high-mileage drivers face greater exposure to the risk of both
a traffic ticket and an accident—even if they drive with a care equal
to that of low-mileage drivers.

A review of the studies of the relationship between violations and
accident involvements points to both of these problems and to a partial
solution:

Ross investigated the relationship between violations and accidents
for the 36 accident-involved drivers . . . and found that 12 of these
36 drivers had reported traffic convictions on their official records.
These 12 people had 18 convictions. However, since there was no
control group in this study, it is not possible to ascertain whether
drivers with accidents had a higher violation rate than drivers without
accidents. A point made by Ross, and one which has an important
bearing on other studies using official records or information collected
in interviews, is that there were discrepancies between interviewee-
reported and recorded accidents and violations large enough to throw
question upon studies relying on one or the other source of information
in arriving at an accident or violation record.

As part of a California driver record study, relationships between
concurrent recorded accidents and citations (convictions for moving
traffic violations) were analyzed. The data for this analysis consisted
of a random sample of 225,000 out of approximately eleven million
existing California driving records. Each driving record included a
three-year history of both accidents and citations. To avoid inadvertent
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correlation effects, citations directly resulting from accident inves-
tigations were labeled as “spurious” and were removed from the
citation counts in most of the analysis.

The driver records were grouped according to the number of
nonspurious citations, and the mean number of accidents per 100
drivers was calculated for each group. This analysis indicated an
approximately linear relationship between citations and accidents
with fluctuations at the high end of the citation count scale as a
result of reduced sample size. Whereas those with no countable
citations in the three-year period had only 14 accidents per 100
individuals, those with five citations had 62 accidents per 100
individuals and those with nine or more citations had 89 accidents
per 100 individuals.

These figures indicate that there is a strong relationship between
the mean number of accidents per driver and the number of concurrent
citations when large groups of drivers are considered. On the other
hand, the correlation coefficient between accidents and nonspurious
citations was only 0.23. This low figure indicates that large errors
could be made if one attempted to estimate the number of accidents
an individual driver had on the basis of his citation record over
the same time period. One would generally expect the correlation
between concurrent events to be higher than nonconcurrent events.
Thus, one should expect even larger errors, if one attempted to predict
an individual’s future accident record on the basis of his past citation
record.

High-mileage drivers, other factors being equal, are exposed to
a higher risk of both accidents and citations. Variations from driver
to driver in exposure in general and annual mileage in particular
may produce part of the correlation between accidents and citations
that has been observed. Another California study examined charac-
teristics of negligent drivers, defined as those whose record indicated
a point count of four or more in 12 months, of six or more in 24
months, or eight or more in 36 months. (A point is scored for each
traffic violation involving the unsafe operation of a motor vehicle
or accident for which the operator is deemed responsible; two points
are scored for a few types of violations deemed especially serious.)

When the annual mileage for a group of negligent drivers over
age 20 was compared with that for a random sample of renewal
applicants it was found that the negligent group averaged 17,219
miles per year while the applicant group averaged 7,449 miles per
year. When males and females were treated separately it was found
that negligent males averaged 17,591 miles per year as contrasted
to 9,649 miles per year for the male applicants, while negligent
females averaged 9,403 miles per year as contrasted to 5,519 miles
per year for female applicants. The negligent drivers may have
inflated their reported annual mileage in order to impress officials
with their need to drive; nevertheless, it appears very likely that
the negligent drivers do indeed drive more than average.'’

17 The State of the Art of Traffic Safety, by Arthur D. Little, Inc., for the
Automobile Manufacturers Association, Inc. (Cambridge, Mass.: Arthur D. Little, Inc.,
June 1966) pp. 42-43.
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Spellbinding Extrapolation

One of the most spellbinding efforts at simple extrapolation
beyond the data arises in this history of guano:

Guano, as most people understand, is imported from the [islands
of the] Pacific—mostly of the Chincha group, off the coast of Peru,
and under the dominion of that government.

Its sale is made a monopoly, and the avails, to a great extent,
go to pay the British holders of Peruvian Government bonds, giving
them, to all intents and purposes, a lien upon the profits of a treasure
intrinsically more valuable than the gold mines of California. There
are deposits of this unsurpassed fertilizer, in some places, to the
depth of sixty or seventy feet, and over large extents of surface.
The guano fields are generally conceded to be the excrements of
aquatic fowls, which live and nestle in great numbers around the
islands. They seem designed by nature to rescue, at least in part,
that untold amount of fertilizing material which every river and
brooklet is rolling into the sea. The wash of alluvial soils, the floating
refuse of the field and forest, and, above all, the wasted materials
of great cities, are constantly being carried by the tidal currents
out to sea. These, to a certain extent at least, go to nourish, directly
or indirectly, submarine vegetable and animal life, which in turn
goes to feed the birds, whose excrements in our day are brought
away by the ship-load from the Chincha Islands.

The bird is a beautifully arranged chemical laboratory, fitted up
to perform a single operation, viz.: to take the fish as food, burn
out the carbon by means of its respiratory functions, and deposit
the remainder in the shape of an incomparable fertilizer. But how
many ages have these depositions of seventy feet in thickness been
accumulating!

There are at the present day countless numbers of the birds resting
upon the islands at night; but, according to Baron Humboldt, the
excrements of the birds for the space of three centuries would not
form a stratum over one-third of an inch in thickness. By an easy
mathematical calculation, it will be seen, that at this rate of deposi-
tion, it would take seven thousand five hundred and sixty centuries,
or seven hundred and fifty-six thousand years, to form the deepest
guano bed. Such a calculation carries us back well on towards a
former geological period, and proves one, and perhaps both, of two
things—first, that in past ages, an infinitely greater number of these
birds hovered over the islands; and secondly, that the material world
existed at a period long anterior to its fitness as the abode of man.
The length of man’s existence is infinitesimal, compared with such
a cycle of years; and the facts recorded on every leaf of the material
universe ought, if it does not, to teach us humility. That a little
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bird, whose individual existence is as nothing, should, in its united
action, produce the means of bringing back to an active fertility
whole provinces of waste and barren lands, is one of a thousand
facts to show how comparatively insignificant agencies in the economy
of nature produce momentous results.'®

Rather substantial inferences, given the observed data!

18 London Farmer’s Magazine: Prospectus of the American Guano Company
(New York: John F. Trow, 1855).
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