CHAPTER 3

Two-Variable Linear Regression

“Yet to calculate is not in itself to analyze.”

—Edgar Allen Poe, The Murders in the Rue Morgue

Introduction

Fitting lines to relationships between variables is the major
tool of data analysis. Fitted lines often effectively summarize the
data and, by doing so, help communicate the analytic results to others.
Estimating a fitted line is also the first step in squeezing further
information from the data. Since the observed value can be broken
up into two pieces,

observation = fitted value + residual,

we can therefore find the remaining part of the observed value that
is unexplained,

residual = observation — fitted value,
and work with the residuals to discover a more complete explanation

of the influences on the response variable.! Such was the procedure
used in the study of automobile safety inspections in Chapter 1.

1This follows J. W. Tukey and M. B. Wilk, “Data Analysis and Statistics:
Techniques and Approaches,” in E. R. Tufte, ed., The Quantitative Analysis of Social
Problems (Reading, Mass.: Addison-Wesley, 1970), pp. 373-74.
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66  TWO-VARIABLE LINEAR REGRESSION

We now briefly review the mechanics of linear regression. The
equation of a straight line is

Y= Bo + B1X:

where B, is the intercept and B, is the slope as shown in Figure
3-1. The observed data are used to estimate the two parameters, B,
and B, of the model. The actual numerical estimates of the intercept
and the slope are written as BO and Bl, where the “hats” indicate
that the quantity is an estimate of a model parameter—an estimate
that is computed from the observed data.

Y =Bt B X

Change in ¥

Y
B, =slope = ————— = Ay
Change in X Ax

B, = intercept
Bo
= value of ¥ when X is0

o

FIGURE 3-1 Equation of a straight line

The slope, a summary of the relationship between X and Y, answers
the question: when X changes by one unit, by how many units does
Y change? The answer is that Y changes by B, units. Consider the
following example. In the 36 congressional elections from 1900 to
1972, the line (shown in Figure 3-2)

9% seats Democratic = —49.64 + 2.07 (% votes Democratic)

fits the relationship between the share of congressional seats won
by the Democrats and the share of votes that party received nationwide
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for their congressional candidates. The estimated slope, Bl, is 2.07;
that is,

" changein Y  change in percent of seats

= = 2.07
1 . . . .
* change in X  change in percent of votes
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FIGURE 3-2 Fitted line and observed data
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This means that a one percent change in the share of the Democratic
vote was typically accompanied by a change of 2.07 percent in the
Democratic share of seats in Congress. Thus an increase of only one
percent in the share of the vote was worth a substantially larger
increase (of a little over two percent) in the share of seats. Of course,
it works the other way, too: a drop of one percent of the vote is
associated with a loss of two percent of seats. Figure 3-2 shows the
data and the fitted line. In this particular case, the estimate of the
slope measures what is called the “swing ratio”—the swing or change
in seats for a given change in votes. Often, then, the substance of
the problem gives a special meaning to the slope, even though the
mechanics of computing the slope are the same in each case.

The estimates of the slope and the intercept are chosen so as to
minimize the sum of the squares of the residuals from the fitted
line. This is the principle of least squares, which says

minimize X e?,
—that is, minimize = (Y, - Y))?

in the notation of Figure 3-3.

One of the glories of the principle of least squares is that it leads
immediately to specific instructions as to how to use the data to
compute B, and B, such that they uniquely satisfy the principle.
The mathematics are found in any statistics text, where it is proved
that the least-squares estimates of the slope and the intercept are
computed from the observed data by

. I(X,-X)Y,-Y)
Pa s (X, - X)?

Qo= Y- é1X-

The fitted line minimizes errors in prediction when X is used to
predict Y—and the errors in prediction are measured with respect
to the Y variable. The estimate of the slope in this case is the slope
of the regression of Y on X. If the roles of X and Y were reversed,
and the values of X predicted from the variable labeled Y, then we
would be looking at the regression of X on Y. In this second case,
the errors in prediction are measured with respect to the X axis.
Unless all the observed points fall on a 45-degree line, the two slopes
are not equal. Thus the regression model is asymmetric—since the
describing variable and the response variable are treated differently



and different fitted lines result, depending upon which variable the
researcher decides is the response variable and which is the describing
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variable.

Note that the question of a possible causal relationship is not decided
by calling one variable the describing variable and the other the
response variable. The question of causality is a separate and often
difficult issue. By effectively summarizing the data, the regression

analysis may sometimes provide some help in deciding if there is

A
Residual, or error=e; =Y ;- Y,

Fitted line
A A A
Yi=BotB X

Predicted value of Y; given X;.
A
This is called Y ;.

Predicted value of Y for a given X ; = );/-

=Bo+Bi X

FIGURE 3-3 Notation for least-squares regression

a causal relationship between the variables.

After fitting a line to a collection of data, the obvious question
is: How well does the line fit? Here are four measures of the quality

of fit:

1. the Nresiduals: Y, — Yi,
2. the residual variation:

,  S(Y,-7¥)?

YIX © ’

N-2
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3. the ratio of explained to total variation:

(Y, - V)2
r2s ————
(Y, - V)2

>

4. the standard error of the estimate of the slope:

SY|X

VIX,-X)?

All these measures are functions of the residuals, Y, — ¥,. And
all except the first are functions of the sum of squares of the residuals,
T (Y, — Y,)? which is the sum of squares minimized in estimating
the parameters, B, and B,, of the fitted line. Such a functional
dependence is not surprising, since reasonable measures of the quality
of a line’s fit to the data could hardly be anything except a function
of the magnitude of the errors.

The residuals are particularly useful in assessing the fit of a line,
since they are measured with respect to the Y axis—that is, they
are measured in the same units as the response variable.

Instead of looking at the whole collection of N residuals—for there
is a residual for each observation—we can summarize them by
estimating the variability about the fitted line:

2 —
Y|X

S(Y,- Y,)?
N-2

Sometimes the square root is taken, yielding the residual standard
error for the fitted line.

Probably the most frequently used measure assessing the quality
of fit of the line is r?, the proportion of the variance explained. Figure
3-4 shows the components of r?. For a given observation, Y, — Y
is the deviation of that observation from the mean, Y. And = (Y,
— Y)? is the total variation in Y (that is, the sum of the squares
of all the deviations from the mean). The describing variable seeks
to predict or explain the individual deviations from the mean. The
error in prediction for the ith observation is Y, - Yi; and the error
variation for all the observations is £ (Y; — Y;)% An intuitively
sensible measure of the fit of the line is the ratio of this error or
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FIGURE 3-4 Components of r2

unexplained variation to the total variation; the smaller this ratio,
the better the fit:

one measure of fit

unexplained variation in Y

total variation in Y
(Y, Y,)?
S(Y,-1?

The commonly used measure, r?, is simply this ratio subtracted from
one:

S(Y,- Y,)?

rr=1- —
S (Y,- 72
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A little algebra proves that

( total ) _ (explained) L (unexplained)

variation variation variation
or

S(Y,-Y?2=3(Y,- N?+=(Y,-Y)%

Therefore, since

unexplained variation

re=1- —
total variation

we have

explained variation X (Y,- Y
total variation S(Y,- V)2’

This interpretation of r?, as the ratio of explained to total variation,
is very common. Often r? is expressed in percentage terms—for
example, a value of r? of .51 will be described as “X explained 51
percent of the variance in Y.” “Explained variance,” as used in the
statistical jargon, refers only to the sum of squares, = (f’i - V)2
It may or may not refer to a good substantive explanation. A big
r? means that X is relatively successful in predicting the value of
Y — not necessarily that X causes Y or even that X is a meaningful
explanation of Y. As you might imagine, some researchers, in present-
ing their results, tend to play on the ambiguity of the word “explain”
in this context to avoid the risk of making an out-and-out assertion
of causality while creating the appearance that something really was
explained substantively as well as statistically.

If the fitted line has no errors of fit (that is, if the observed points
all lie in a straight line), r? equals one, since there is no unexplained
variation. At the other extreme, if the describing variable is no help
at all in predicting the value of Y, r? will be near zero, since no
variance is explained. In this unfortunate case, the regression line
is simply Y = Y (in other words, the predicted value of Y does not
depend on the value of X).

In evaluating the fitted line, it is useful to know if the slope differs
from zero. If the slope does not differ meaningfully from zero, then
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X gives no help in explaining Y—the line is ¥ = Y. As explained
in textbooks on statistics, a test of statistical significance and a
confidence interval for the estimate of slope are constructed from the
standard error of the estimate of the slope, which equals

_ S Y|X

Sﬁl_ 1/E(Xi_ X)Z :

To conduct the test of statistical significance for Ql # 0, we consider
the ratio of the estimated slope and its standard error:

Bl_o
Sa

Under appropriate statistical assumptions, this has a t-distribution,
with N — 2degrees of freedom. For Ngreater than 30, the t-distribution
closely matches the normal distribution. It is this match that gives
rise to the rule of thumb that a regression coefficient should be
roughly twice its standard error if it is to be statistically significant
at the .05 level—since, for the normal, the two-tailed .05 limits are
at =1.96 standard deviations.

Finally, note from the denominator of the formula for S; that
the error in the estimate of the slope grows smaller as the variability
of X increases; that is, if the observations on the X variable are
spread out instead of bunched together, the standard error of the
estimate of the slope will be reduced. Consequently, if there is reason
to believe that there is a linear relation between X and Y and if
we can control the intervals at which X is measured, then it is better
to choose values of X over a fairly wide range rather than bunched
up together. For example, in a study of the effects of class size on
teaching effectiveness, it would be better to construct classes of size
10, 15, and 20 students rather than 13, 15, and 17. By doing so,
we might obtain a more secure estimate of the relationship between
size and effectiveness.

This section has outlined the statistical mechanics of two-variable
linear regression. We now apply the methods to a variety of data.

Example 1: Presidential Popularity and
the Results of Congressional Elections

Let us, by way of review, apply all the different statistics
estimated in the linear regression model to a single problem. Figure
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3-5 shows the relationship between the President’s approval rating
(from the Gallup Poll) shortly before the midterm congressional
election and the number of seats the President’s political party loses
in that congressional election, from 1946 to 1970. Table 3-1 shows

60—
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Percent approving the way President
is currently handling his job (X)

FIGURE 3-5 President’s approval rating vs. his party’s seat loss

the details of the data. Note that the political party of the President
lost seats in each of the seven midterm elections from 1946 to 1970.
Sometimes the loss was small—in 1962, for example, the Democrats
lost only four seats in the House of Representatives compared to
what they had in 1960. In other elections, many seats were lost:
the Democrats suffered a decline of 55 Congressional seats in 1946.
The Republicans, under President Eisenhower, had a bad year in
the 1958 midterm elections, losing 48 seats.

Is, then, the extent of the loss of congressional seats by the President’s



75 TWO-VARIABLE LINEAR REGRESSION

TABLE 3-1
Congressional Seats and Presidential Popularity

Seats held in House of Seats lost in

Year Representatives by midterm election by
Democrats Republicans President’s party

1944 243 190

1946 188 246 Democrats lost 55

1948 263 171

1950 234 199 Democrats lost 29

1952 213 221

1954 232 203 Republicans lost 18

1956 234 201

1958 283 153 Republicans lost 48

1960 262 175

1962 258 176 Democrats lost 4

1964 295 140

1966 248 187 Democrats lost 47

1968 243 192

1970 255 180 Republicans lost 12

President’s popularity rating early September in

Year off-year elections (percent approve)?
1946 Truman 32%
1950 Truman 43%
1954 Eisenhower 65%
1958 Eisenhower 56%
1962 Kennedy 67%
1966 Johnson 48%
1970 Nixon 56%

soURCE: Gallup Political Index, October 1970, No. 64, page 16.

2Percent approve + percent disapprove + percent no opinion = 100 percent.
The question is worded as follows: “Do you approve or disapprove of the way Blank
is handling his job as President?”

party related to the approval rating of the President?? The correlation
between popularity and seat loss is, for the seven elections, —.75,

2Two papers dealing with the issues raised by these data are: Angus Campbell,
“Voters and Elections: Past and Present,” Journal of Politics, 26 (November 1964);
745-57, and John E. Mueller, “Presidential Popularity from Truman to Johnson,”
American Political Science Review, 64 (March 1970), 18-34. See also, for a more
sophisticated discussion, Douglas A. Hibbs, Jr., “Problems of Statistical Estimation
and Casual Inference in Dynamic, Time-Series Regression Models,” in Herbert Costner,
ed., Sociological Methodology, 1973-1974 (San Francisco: Jossey-Bass, 1974), ch. 10.
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indicating that the lower the President’s popularity, the more seats
his party loses in the off-year elections. This is, for most political
research at least, a rather strong, impressive correlation—although
note that the correlation coefficient doesn’t tell us how much a decline
in the approval rating is associated with a loss of how many seats.
The regression coefficient does, however, provide some help with this.
The equation of the least-squares line is

seats lost = 93.36 — 1.20 (percent approving President)

Figure 3-5 shows this line. The slope is —1.20, indicating that a
one percent decline in the percent approving the current president
is associated with a loss of about 1.2 seats in the upcoming off-year
election. That regression coefficient is statistically significant:

Lo estimate of regression coefficient _—120 9 50
standard error 48 7

which, for five degrees of freedom, (N— 2 = 7 — 2 = 5) exceeds
the one-tailed t-value at the .05 level (—2.02).

Furthermore, the President’s approval rating explains a good deal
of the statistical variation in the outcome of the election:

r=-.75, r? = .56.

Thus the regression statistically explains 56 percent of the variation
in the shifts in congressional seats.

All in all, this is a fairly impressive regression—a good correlation,
a substantively meaningful regression coefficient that is statistically
significant, and more than half the variance explained. Since it is
so good, perhaps we can use the model for predictive purposes: taking
the pre-election approval rating for the President and plugging into
the regression equation to come up with an estimate of the loss of
seats in the congressional election. This is all very nice, except that
the prediction will not be a very secure one. Let us evaluate the
quality of predictions based on the fitted line.

One way to get an idea of the predictive properties of the model
is to look at the estimate of the variability about the line, the residual
variance:

, S(Y,- Y,)?
T TNCg



77  TWO-VARIABLE LINEAR REGRESSION

The numerator is simply the unexplained variation. Taking the square
root puts this statistic into the units in which the response variable,
Y, is measured:

S yx = 13.3 seats,

which is a rather large standard error in terms of predicting seats—
especially when we start to consider confidence intervals of + two
standard errors.

Or, to evaluate the predictive quality of the model, we might look
directly at the residuals for each year of the observed data. Table 3-2
shows the computations. Once again, we see pretty substantial errors
in prediction from the observed data—and, of course, the model itself
is estimated so as to minimize the sum of squares of these residuals.

In short, then, we have here the beginnings of a good explanatory
model, but it still needs improvement if it is to be useful for predictive
purposes. How might we build a better, more complete model? Consider
a model that also takes into account the economic conditions—for
which some voters might hold the President and his party responsi-
ble—prevailing at the time of the election:

seats lost = B, + B, (presidential + B, (economic
popularity) conditions).

Just as in the two-variable case, this three-variable model is
estimated by least squares. Such a multiple regression, as it is called,
will be examined in Chapter 4.

TABLE 3-2
Residual Analysis

A

Y, = observed X, = Y, = predicted Residual®
seat loss by Presidential  seat loss for a = observed
President’s approval given X,, Y, = — predicted
Year party rating 93.4 — 1.20X, =Y, -Y,
1946 55 seats 32% 934 — 1.2(32) = 55 55 —55= 0 seats
1950 29 seats 43% 93.4 — 1.2(43) = 42 29 — 42 = —13 seats
1954 18 seats 65% 934 —1.2(65) =15 18 — 15 = 3 seats
1958 48 seats 56% 93.4 — 1.2(56) = 26 48 — 26 = 22 seats
1962 4 seats 67% 934 - 1267 =13 4 — 13 = -9 seats
1966 47 seats 48% 934 — 1.2(48) = 36 47 — 36 = 11 seats
1970 12 seats 56% 934 — 1.2(56) = 26 12 — 26 = —14 seats

2Note that if residual > 0, the President’s party lost more seats than predicted;
if residual < 0, the President’s party lost less seats than predicted.
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Example 2: Lung Cancer and Smoking

THE FITTED LINE

Figure 3-6 shows the relationship between the death rate from lung
cancer in 1950 and the cigarette comsumption in eleven countries
in 1930. Cigarette consumption is lagged twenty years behind the
death rate on the assumption that the carcinogenic consequences of
smoking require a considerable length of time to show up. The fitted
regression line is

lung cancer deaths .
per million people | =.23 S:lgarettes congumed + 66
in 1950 (Y) n 1380 LX) ’

standard error of slope = .07 r2= .54

The regression indicates that when cigarette consumption in 1930
from one country to another is greater by, say, 500 cigarettes per
year per person, the lung cancer rate apparently increased by about
115 deaths per million in 1950.

SCALING OF VARIABLES AND INTERPRETATION OF
REGRESSION COEFFICIENTS

Note that in order to make an accurate interpretation of the regression
coefficients, we must keep track of the units of measurement of each
variable. For example, if the lung cancer rate were expressed as deaths
per 100,000 people (instead of per 1,000,000), then the regression
coefficient would be reduced by a corresponding factor of ten down
to .023. This coefficient, although it is numerically smaller, reflects
only the change in the scaling of the death rate—and the coefficient
has exactly the same substantive meaning and importance as the
original coefficient of .23. This obvious point is worth keeping in
mind because some research reports are not particularly clear in
reporting the units of measurement associated with each regression
coefficient—and the reader must dig out the units of measurement
and the scaling of the variables from the footnotes.

ANOTHER FITTED LINE: A REGRESSION WITHOUT
THE UNITED STATES

A further look at the scatterplot shows the rather strong effect of
one extreme point in shifting the fitted line. The line is pulled down
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FIGURE 3-6 Crude male death rate for lung cancer in 1950 and per
capita consumption of cigarettes in 1930 in various
countries

source: R. Doll, “Etiology of Lung Cancer,” Advances in Cancer

Research, 3 (1955), reprinted in Smoking and Health, Report of the

Advisory Committee to the Surgeon General (Washington: USGPO,

1964), p. 176.

by the low death rate for the United States. Removing that country
from the data and computing a new regression line based on the
remaining ten countries yields quite a different fitted line:

N = 10 Countries

N = 11 Countries

(Without U.S.) (With U.S.)
Y=236X+ 14 Y=.23X+ 66
r2=.89 r? = 54

Standard error of slope = .05
Dotted line in Figure 3-7

Standard error of slope = .07
Solid line in Figure 3-7
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FIGURE 3-7 Lung cancer and cigarette consumption: fitted line for
ten countries, omitting the United States

Note the great improvement in the explained variance in the regression
based on the ten countries; a straight line really fits the ten quite
well. Perhaps we should look more carefully into the conditions that
make for a somewhat lower death rate than expected, given the amount
of tobacco consumed, in the United States. That will be done below.

WHAT IF NOBODY SMOKED? INTERPRETING THE INTERCEPT

Let us return to consideration of the original regression for all eleven
countries. Can we find out what the lung cancer rate might have
been if there had been no smoking? Not very well with these particular
data—for several reasons.

First, there is simply no experience at all with any countries
consuming less tobacco per capita than Iceland, at 220 cigarettes
per year per person in 1930. Obviously we want to be careful in
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extending our results beyond the range of the data; some of the
particular problems of extrapolation are discussed in Chapter 2.

Second, one naive way to answer the question meets some difficulties
after a careful examination of the scatterplot. The naive approach
is to set cigarette smoking at zero in the fitted regression equation
and see what the lung cancer rate is. That rate is simply the intercept,
66 deaths per million per year. But note the pattern of countries
down at the low end with respect to smoking: the three lowest countries
have negative residuals, all lying below the fitted regression line.
Thus, in the countries with a low consumption of cigarettes, there
is some indication that a better-fitting curve would bend more sharply
downward; thus the straight line imposed on the data is a bit misleading
at the low end of the scale. This suggests that the rate would be
considerably lower than 66 if nobody smoked. Perhaps a better estimate
would be around 14 deaths per million—the intercept for the regression
line that excluded the United States. The exclusion of that outlying
value seems appropriate in estimating the intercept, since the outlier
is far from the region of interest and since the residuals near the
region of interest indicate that the extreme point has shifted the
regression line based on all the countries.

Note finally that the line is literally imposed on the data—and
just because we do the computations necessary to produce a slope
and an r?, does not, of course, necessarily mean that the straight
line is the best curve to fit to the data or that the two variables
are, in fact, related in a linear fashion. In a later example, we will
use “linear” regression to fit some other curves to data.

What kind of data would satisfactorily estimate the death rate
from lung cancer if nobody smoked cigarettes? First, we need data
based on individuals—smokers and nonsmokers—to make compari-
sons of lung cancer rates. Second, it is important to make sure that
people susceptible—perhaps because of genetic or environmental
factors—to lung cancer are not also people who are more likely to
smoke. Thus we might compute the lung cancer rate for many different
sorts of people who are smokers or nonsmokers. Such differential
rates for different population groups could then be adjusted to the
population as a whole to estimate the lung cancer rate if, contrary
to fact, no one smoked.

ANALYZING THE RESIDUALS

Table 3-3 displays the original data, along with the predicted values
for the lung cancer rate (predicted on the basis of cigarette consump-
tion) and the errors made in the prediction for each country. Note
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TABLE 3-3
Residual Analysis

Y, = observed X, = .
lung cancer  cigarettes Y, = predicted lung Residual
deaths per  consumed cancer death rate = observed
million per capita for a given X, — predicted
Country in 1950 in 1930 Y, = .23X, + 66 =Y, - Y,
Iceland 58 220 .23(220) + 66 =116 58 — 116 = —58
Norway 90 250 .23(250) + 66 =123 90 — 123 = -33
Sweden 115 310 .23(310) + 66 = 137 115 — 137 = 22
Canada 150 510 .23(510) + 66 = 183 150 — 183 = —-33
Denmark 165 380 .23(380) + 66 = 1563 165 — 153 =
Australia 170 455 .23(455) 66 = 170 170 — 170 =
United States 190 1280 .23(1280) + 66 = 359 190 — 359 = —169
Holland 245 460 .23(460) + 66 = 171 245 — 171 =
Switzerland 250 530 .23(530) + 66 = 187 250 — 187 =
Finland 350 1115 .23(1115) + 66 = 321 350 — 321 =
Great Britain 465 1145 .23(1145) + 66 = 328 465 — 328 =

the large residuals for Great Britain and the United States and the
negative residuals for the smaller values of tobacco consumption.
The residuals add up to zero; the sum of the squared residuals is
the smallest it can be—no other line can improve over the least-squares
line in minimizing the sum of the squares of the residuals. These
two properties of the residuals—

()= (Y, - Y,) =0,and
(2) 2 (Y, - Y,)? is minimized

—are properties of all least-squares lines.

A further analysis of the residuals can be made by plotting the
residuals against the predicted values (Y) as shown in Figure 3-8.
Sometimes such a display yields up more information because the
reference line is a horizontal line rather than the tilted line fitted
to the original scatterplot. Contemplation of the residuals reveals
large errors in the prediction of the death rate for Great Britain
and the United States. Great Britain had a much higher death rate
than the United States in 1950, although the per capita consumption
of cigarettes in the two countries in 1930 was roughly equal. What
differences between the two countries might account for the differences
in lung cancer death rates even though the tobacco consumption was
roughly the same? A few possibilities include:

1. Differences in air pollution between the two countries.
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FIGURE 3-8 Residuals vs. predicted values, lung cancer and smoking

2. Differences in the age distribution of the populations of the two
countries. Since lung cancer occurs more frequently among older
smokers, the rate of cancer might well be higher in a country that
had a larger share of older people.

3. Differences in smoking habits (such as smoking cigarettes right
down to the end) that expose the lungs to different doses of smoke
from each cigarette consumed. Observers have reported that the British
often smoke their cigarettes right down to the very end (probably
because cigarettes are heavily taxed and very expensive in England)
and also that the British tend to be “drooper” smokers—they let
the cigarette droop from the mouth rather than placing it in an
ashtray or holding in the hand. Some researchers compared the lengths
of discarded cigarette butts in the two countries and discovered rather
large differences in length, the American discards being considerably
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longer (30.9 mm) than the British (18.7 mm).® Other studies found
that “the mortality rate for lung cancer in England was especially
high for the smokers who ‘drooped’ the cigarettes off the lip while
they smoked, a habit which may result in the delivery of a greater
dose of smoke from each cigarette.”*

4. Differences in the composition of the tobacco.

5. Differences in the factors which mute or accentuate the health
consequences of smoking. For example, construction workers and
others exposed to the insulating material asbestos who also smoke
have a very high risk of lung ailments—a much higher risk than
expected by merely adding up the excess risk from smoking plus
the excess risk from working with asbestos. (This extra risk coming
from the combination of the two factors is called, in the statistical
jargon, an “interaction effect.”) Thus if more smokers in a country
were exposed to asbestos, then that country would have a higher
rate of lung cancer than expected on the basis of tobacco consumption
alone.

6. Differences across countries in what medical symptoms doctors
define or describe to be lung cancer.

VALUE OF THESE DATA AS EVIDENCE

These data have only a very modest value as evidence bearing on
the relationship between smoking and lung cancer. Since the data
are aggregate, countrywide figures, they provide very indirect evidence
concerning the relationship between smoking and health among
individuals. Furthermore, eleven data points aren’t much to work
with—and the exclusion of a single observation shifted the variance
explained from 54 percent to 89 percent, indicating the sensitivity
of the analysis to outlying observations.

A big worry about the sort of data presented in Figures 3-6 and
3-7 is selection—how were the eleven countries included in the analysis
chosen from all the countries of the world? Why these eleven? Would
the results be the same if more countries were selected? Or eleven
different countries? With so few data points, the analysis is very
fragile; just a couple of fresh observations divergent from the fitted
line would cause the whole relationship to fall apart. Careful, if
manipulative, selection of data points can easily generate pseudo-rela-

3Report of the Advisory Committee to the Surgeon General of the Public
Health Service, Smoking and Health (Washington, D.C.: U.S. Government Printing
Office, 1959), p. 177.

*The Health Consequences of Smoking, 1969 Supplement to the 1967 Public
Health Service Review (Washington, D.C.: U.S. Government Printing Office), p. 57.
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FIGURE 3-9 Mortality from degenerative heart disease (1948-1949,
men) in relation to fat calories consumed
sources: Yerushalmy, op. cit. and Keys, op. cit (see p. 87).

tionships. Yerushalmy points out such an example:

Another important error often encountered in the literature is the
fallacy of utilizing evidence supporting a given hypothesis and
neglecting evidence contradicting it. An illustration is shown in Figure
[3-9]. In this case, the investigator selected six countries and corre-
lated the percent of fat in the diet with the mortality of coronary
heart disease in these six countries. . . . On the face of it, the
correlation appears very striking, and indeed the author in reviewing
the data in Figure [3-9] makes the following strong statement: “The
analysis of international vital statistics shows a striking feature
when the national food consumption statistics are studied in parallel.
Then it appears that for men aged 40 to 60 or 70, that is, at the
ages when the fatal results of atherosclerosis are most prominent,
there is a remarkable relationship between the death rate from
degenerative heart disease and the proportion of fat calories in the
national diet. A regular progression exists from Japan through Italy,
Sweden, England and Wales, Canada, and Australia to the United
States. No other variable in the mode of life besides the fat calories
in the diet is known which shows anything like such a consistent
relationship to the mortality rate from coronary or degenerative heart
disease.”
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coronary heart disease, but differing greatly in con-
sumption of fat calories in percent of total calories

SOURCE: Yerushalmy, op cit. (see p. 87).

The question arises how were these six countries selected. Further
investigation reveals that these six countries are not representative
of all countries for which the data are available. For example, it
is easy enough to select six other countries which differ greatly
in their dietary fat consumptions, but have nearly equal death rates
from coronary heart disease [Figure 3-10]. Similarly, six other
countries were easily selected which consumed nearly equal propor-
tions of dietary fat, but which differed widely in their death rates
from coronary heart disease [Figure 3-11]. This tendency of selecting
evidence biased for a favorable hypothesis is very common. For
example, investigations among the Bantu in Africa are often men-
tioned in support of the dietary fat hypothesis of coronary heart
disease, while observations on other African tribes, Eskimos, and
other groups which do not support the hypothesis are generally
ignored.

However, even when these errors are avoided and the studies are
well conducted, the conclusions which may be derived from observa-
tional studies have great limitations stemming primarily from non-
comparability of the self-formed groups. The phenomenon of self-
selection is the root of many of the difficulties. Were all other
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complications eliminated, the inequalities between groups which
result from self-selection would still leave in doubt inferences on
causality. For example, in the study of the relationship of cigarette
smoking to health, if we assume well-conducted investigations in
which (a) large random samples of the population have been selected
and the individuals correctly identified as smokers, nonsmokers, or
past smokers, (b) the problem of nonresponse did not exist, (c) the
population had been followed long enough to identify all cases of
the disease in question, (d) no problems of misdiagnosis and misclassi-
fication existed, (e) and no one in the population had been lost from
observation, then even under these ideal conditions, the inferences
that may be drawn from the study are limited because the individuals
being observed, rather than the investigator, made for themselves
the crucial choice: smoker, nonsmoker, or past smoker.®?
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FIGURE 3-11 Six countries selected for equality in consumption of
fat calories in percent of total calories, but differing
greatly in mortality from coronary heart disease

Source: Yerushalmy, op. cit.

5J. Yerushalmy, “Self-Selection—A Major Problem in Observational Studies,”
in Lucien M. Lecam, Jerzy Neyman, and Elizabeth L. Scott, eds., Proceedings of the
Sixth Berkeley Symposium on Mathematical Statistics and Probability, Biology and
Health, Volume IV (Berkeley and Los Angeles, California: University of California
Press, 1972), pp. 332-33. The internal quotation is from A. Keys, “Atherosclerosis—A
Problem in Newer Public Health,” Journal of Mt. Sinai Hospital, 20 (1953), 134.
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Still another reason for not taking our little analysis as serious
evidence is that much better data are available to answer questions
concerning the relationship between smoking and health. Smoking
is probably the most carefully investigated public health problem
there is; a vast amount of information has been gathered from health
interviews with many people over many years, from autopsies, hospital
records, animal studies, and so on. In other fields, where the amount
and variety of evidence is less and the resources for collecting new
data scarcer, the evidence of the sort examined here might represent
the best available information and, furthermore, theories would have
to stand or fall and decisions be made in the faint light of such
analysis. Thus the overall importance of a particular piece of analysis
varies in relation to what other evidence there is that bears on the
question at hand.

Example 3: Increase in the Number of
Radios and Increase in the Number of
Mental Defectives, Great Britain,
1924-1937

The table shows a measure of the number of radios in the
United Kingdom from 1924 to 1937 and the number of mental
defectives per 10,000 people for the same years. These data form
the basis for the discussion of “nonsense correlations” by the famous
British statisticians, G. Udny Yule and M. G. Kendall.

The fit of the line is remarkably good, with a bit over 99% of
the variation in number of mental defectives “explained” (in a
statistical sense!) by the growth in the number of radios. Note the
small, but systematic variation in the residuals, with the points
weaving around the fitted line in clusters above and then below the
fitted line. These “wrinkles” in the residuals might be worth pursuing
if this were more than a nonsense correlation.

Why does this extremely strong, although nonsensical, relationship
come about? This is a relationship formed by relating two increasing
time series. In other words, the number of radios is increasing over
time and also the number of mental defectives is increasing over
time. Millions of other things are increasing over the time period
from 1924 to 1937, including the population, the number of smokers,
military expenditures in Europe, the number of patents issued, and
the number of letters in the first name of the Presidents of the United
States (Calvin, Herbert, and Franklin). For example, consider this
regression:
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Number of radio Number of notified mental
receiver licenses defectives per 10,000 of

Year issued (millions) estimated population

1924 1.350 8

1925 1.960 8

1926 2.270 9

1927 2.483 10

1928 2.730 11

1929 3.091 11

1930 3.647 12

1931 4.620 16

1932 5.497 18

1933 6.260 19

1934 7.012 20

1935 7.618 21

1936 8.131 22

1937 8.593 23

Figure 3-12 displays the regression line fitted to the above data:

number of mental
=220

defectives per gmﬁfizi;adms] + 4.58,
10,000

r?2 = .99, standard error of slope = .08.

numbffr of mental number of letters

defectives per 10,000 in the first name

in the United =5.90| of the President ~ 2644,
Kingdom, 1924-1937 of U.S., 1924-1937

r? = .89, standard error of slope = .66.

Yule and Kendall further observe:

. . it might be argued that the period in question was one of great
technical progress in many scientific fields; that one effect of this
movement was the development of broadcasting and the general
spread of the practice of listening evinced by the increased number
of [radio] licenses taken out; that another effect was the greater
interest in psychological ailments and increased facilities for treat-
ment, resulting in either more discoveries of mental defect or greater
readiness to submit cases to medical notice. Whether this is the
right explanation is doubtful, but it is a possible rational explanation
of what at first sight seems absurd.®

5G. Udny Yule and M. G. Kendall, An Introduction to the Theory of Statistics

14th ed., (London: Charles Griffin, 1950), p. 315-16.



90 TWO-VARIABLE LINEAR REGRESSION

25

N
o
T

o
T

Mental defectives per 10,000

1924
o/ 1925

| | 1

2.0 4.0 6.0 8.0

Number of licenses for radio receivers (millions)

FIGURE 3-12 Radio receivers and mental defectives

Whether listening to the radio produced mental defectives (or,
perhaps, whether the increase in number of mental defectives led
to a greater demand for radios) is not answered by this regression
of two increasing time series. And the relationship between the number
of British mental defectives and the first names of American Presidents
during 1924 to 1937 does not gain in credibility because the length
of the name “explained” 87 percent of the variation in the number
of mental defectives. What is clear, however, is that:

1. Even very high values of “explained” variance can occur without
the slightest suspicion of a causal relationship between variables.
There are times when a high value for r? might increase our
degree of belief that there is a causal relationship, but this depends
upon the substantive nature of the problem.

2. If nonsense goes into a statistical analysis, nonsense will come
out. The nonsensical output will have all the statistical trappings,
will look just as official, just as “scientific,” and just as “objective”
as a substantively useful regression. It is, however, the substance
and not the form that is the important thing. As Justice Holmes
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once wrote: “The only use of forms is to present their contents,
just as the only use of a pint pot is to present the beer . . .
and infinite meditation upon the pot will never give you the beer.”

We have now seen regression techniques applied to several prob-
lems—automobile safety inspections, smoking and lung cancer, and
radios and mental problems. These examples all served to illustrate
certain aspects of the logic and mechanics of fitting a line to the
relationship between two variables. It is now time to examine a more
extensive regression analysis in action, going into detail on a serious
problem. Such is our next application.

Example 4: The Relationship between
Seats and Votes in Two-Party Systems’

Arrangements for translating votes into legislative seats al-
most always work to benefit the party winning the largest share
of the votes. That the politically rich get richer has infuriated the
partisans of minority parties, encouraged those favoring majority
parliamentary rule, and, finally, bemused a variety of statisticians
and political scientists who have tried to develop parsimonious descrip-
tions and explanations of the inflation of the legislative power of
the victorious party. Here we will use a linear regression model to
describe how the votes of citizens are aggregated into legislative seats
and also to estimate the bias in an electoral system.

Figure 3-13 shows the data used in the analysis.® These six scatter-
plots indicate that the relationship between seats and votes in most
two-party systems displays four obvious characteristics:

1. As a party’s share of the vote increases, its share of the seats
also increases in a fairly regular fashion.

7A more extended version of this material appeared in Edward R. Tufte,
“The Relationship Between Seats and Votes in Two-Party Systems,” American Political
Science Review, 68 (June 1974), 540-54.

8The election tabulations were collected from state and national yearbooks.
The U.S. congressional returns have been collected together in Donald Stokes and
Gudmund Iversen, “National Totals of Votes Cast for Democratic and Republican
Candidates for the U.S. House of Representatives, 1866-1960,” July 1962, mimeo,
Survey Research Center, University of Michigan. Congressional Directories (Washing-
ton, D.C.: U.S. Government Printing Office) were used to update the Stokes-Iversen
compilation and also as the source for tabulations requiring election returns in individual
congressional districts. All percentages of the vote were computed from the votes
received by the two major parties only.
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2. The party that receives a majority of the votes usually receives
a majority of parliamentary seats. Such was the case in 93 percent
of the national elections and 53 percent of the state elections
examined here. The points in the upper left and lower right
quadrants represent those elections in which the party winning
a majority of votes failed to take a majority of seats. New Jersey,
like many other states prior to redistricting (and some after
redistricting), shows many markedly biased outcomes, with the
Democrats often winning fully three-fifths of the votes but less
than one-third of the seats.

3. A party that wins a majority of votes generally wins an even
larger majority of seats.

4. In most elections (100 percent in this series), the winning party
receives less than 65 percent of the votes (although it may receive
a much larger share of seats).

Even a casual inspection of the data displayed in Figure 3-13
indicates that almost any curve with a slope around two or three
in the region from 35 to 65 percent of the vote for a party will
fit the relationships rather well. Let us now examine the regression
model.

The relationship between seats and votes is described most directly
by a simple linear equation:

(percentage of seats for) <percentage of votes ) i
= P 0

a given political party for that party

The estimate of the slope, Bl, measures the percentage change in
seats corresponding to a change of one percent in the votes for a
party. Thus fil estimates the swing ratio or the responsiveness of
the partisan composition of parliamentary bodies to changes in the
partisan division of the vote in two-party systems. For example, the
swing ratio during the last twelve U.S. congressional elections is
1.9, indicating that a net shift of 1.0 percent in the national vote
for a party has typically been associated with a net shift of 1.9 percent
in congressional seats for a party.

In addition, the fitted line provides an estimate of another important
parameter of the electoral system: the bias for or against a particular
party in the translation of votes into seats. Setting the percentage
of seats at 50 percent and solving for the percentage of votes in
the equation of the fitted line tells one the share of the vote that
a party typically needs in order to win a majority of seats in the
legislative body. The difference between this number and 50 percent
is the bias or party advantage, as illustrated in Figure 3-14. For
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FIGURE 3-14 The fitted seats-votes line

example, in recent congressional elections, the Democrats have typi-
cally needed only about 48 percent of the national vote in order to
win a majority of House seats; thus the bias or party advantage
is about 2 percent. Later we will explain some of the variations in
the swing ratio and bias for different electoral systems over the years.

Note that we are using the estimate of the slope in the linear
model in order to estimate the swing ratio; the analogue of the intercept
in the linear model is, in this case, the bias. Thus both the parameters
estimated by the linear regression model are useful in this analysis.

One minor defect of the linear fit is that in general the fitted
line will not pass through the end points (0 percent votes, 0 percent
seats) and (100 percent votes, 100 percent seats), which are on the
seats-votes curve by definition. Although slightly inelegant, this
shortcoming is hardly troublesome—especially since parties in two-
party systems almost never get less than 35 percent of the vote nor
more than 65 percent of it.° The clear advantage of the linear fit

9A “logit” model dealing with this problem is described in Example 6 of
this chapter.
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is that it yields two politically meaningful numbers, the swing ratio
and the bias, that can be compared over time and electoral systems.
Table 3-4 records the fitted lines for a variety of elections. The
swing ratios and the biases show considerable variation both between
electoral systems and within some systems over time. Among the
countries, Great Britain has the greatest swing ratio at 2.8. In the
United States the swing ratio has been about two, although, as we
shall see later, there is evidence that in the last few elections the
swing ratio has decreased considerably. The U.K. electoral system
shows little bias; in the United States a persistent bias has favored

TABLE 3-4
Linear Fit for the Relationship between Seats and Votes

B i Percentage votes
Swing ratio required to give Advantaged
and the indicated party party and
(standard a majority of seats amount of
error) r? in the legislature advantage

Great Britain, 2.83 94 50.2% Labour Conservatives,
1945-1970 (.29) 2%
New Zealand, 2.27 91 51.4% Labour National, 1.4%
1946-1969 (.27)
United States, 2.39 71 49.1% Democrats Democrats, 0.9%
1868-1970 (.21)
United States, 2.09 .87 48.0% Democrats Democrats, 2.0%
1900-1970 (.14)
United States, 1.93 .81 48.8% Democrats Democrats, 1.2%
1948-1970 (.29)
Michigan, 2.06 .76 52.1% Democrats Republicans,
1950-1968 (.41) 2.1%
New Jersey, 2.10 .53 61.3% Democrats Republicans,
1926-1947 (.44) 11.3%
New Jersey, 3.65 .63 52.0% Democrats Republicans,
1947-1969 (.89) 2.0%
New York, 1.28 .73 54.3% Democrats Republicans,

1934-1966 (.19) 4.3%
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the Democratic party—partially the result of that party’s victories
in small congressional districts and in districts with low turnouts.
In Michigan, New Jersey, and New York there have been large biases
favoring the Republicans and a great deal of variation in swing ratios.
The relationship between votes and seats is weaker for the three
states than for the three countries; in fact, in the states during some
time periods there was virtually no correlation between the share
of seats that a party won in the legislature and the share of votes
it had received at the polls! In more recent elections, however, there
was a fairly strong relationship between seats and votes in all three
states—probably the result of new rules and practices for districting.

THE SWING RATIO IN RECENT CONGRESSIONAL ELECTIONS

We now examine changes in the swing ratio in elections for the U.S.
House of Representatives. Table 3-5 shows estimates of swing ratio
and bias for congressional elections for the last hundred years. It
appears that a shift—in fact, a rather striking shift—in the relation-
ship between seats and votes has taken place in the last decade.
The 1966-1970 triplet displays the second lowest swing ratio of the
17 election triplets since 1870. No doubt the recent elections provide
a somewhat narrow range of electoral experience; the Democrats won
with votes between 50.9 and 54.3 percent (a range in votes that is
the fifth smallest of the 17 triplets). Until the Republicans control
Congress or the Democrats win more decisively, the “new” swing
ratio and bias will not be well estimated. The bias is a spectacular
7.9 percent, reflecting the two close votes that yielded the Democrats
a substantial party majority in the House. The estimate of the bias
for the 1966-1970 election triplet is, however, somewhat more insecure
than for previous blocs of elections because the error of the estimated
bias is proportional to the reciprocal of the swing ratio—and in this
case the swing ratio is moderately small.

Compared with all the other performances of the electoral systems
examined here, a system with a swing ratio of .7 and a bias of 7.9
percent describes a set of electoral arrangements that is both quite
unresponsive to shifts in the preferences of voters (as expressed in
their party votes for their representatives) and, at the same time,
badly biased. How did the low value of the swing ratio for 1966-1970
come about? Certainly the Democratic party, after their substantial
gainin votes (3.4 percent) and relatively tiny gain—given the “normal”
swing ratio exceeding 2.0—in seats (3.2 percent) would like to know
what happened in 1970. And for Republicans, 1966 and 1968 need
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TABLE 3-5
Three Elections at a Time: Estimates of Swing Ratio and Bias

Percentage of
votes to elect

Years of Swing 50% seats for Size of Democratic
elections ratio Democrats party advantage
1870-74 6.01 51.4% —-1.4%
1876-80 1.48 50.0% .0%
1882-86 3.30 50.8% —.8%
1888-92 6.01 50.9% —.9%
1894-98 2.82 51.7% -1.7%
1900-04 2.23 50.1% —.1%
1906-10 4.21 48.8% 1.2%
1912-16 2.39 48.8% 1.2%
1918-22 1.96 47.6% 2.4%
1924-28% —-5.75% 40.8%* 9.2%*
1930-34 2.28 45.9% 4.1%
193640 2.50 47.1% 2.9%
194246 1.90 48.1% 1.9%
1948-52 2.82 49.5% 5%
1954-58 2.35 50.1% -.1%
1960-64 1.65 47.4% 2.6%
1966-70 71 42.1% 7.9%

2The figures estimated for the 1924-1928 election triplet are peculiar because of
the extremely narrow range of variation in the share of the vote (42.1, 41.6, and
42.8 percent) during that period. The average range within an election triplet is about
6 percent.

explanation: after all, they managed to make the national division
of the vote very close but in neither year were they able to win
even 45 percent of the House seats.

The swing ratio indicates the potential for turnover in repre-
sentation. The smaller the swing ratio, the less responsive the party
distribution of seats is to shifts in the preferences of voters. The
extreme case is a swing ratio near zero; such a flat seats-votes curve
means that the distribution of seats does not change with the distribu-
tion of votes. Figure 3-15 shows the strong relationship between the
swing ratio and the turnover in the House of Representatives for
election triplets since 1870. Note the steady drift downward over
the years in both the swing ratio and the turnover. Since 1948, the
swing ratio has shifted from 2.8 to 2.4 to 1.7, and, most recently,
to 0.7. Similarly the turnover in the House has declined, reflecting
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the long-run decrease in the intensity of competition for congressional
seats.'®

One element in the job security of incumbents is their ability to
exert significant control over the drawing of district boundaries; indeed,
some recent redistricting laws have been described as the Incumbent
Survival Acts of 1974. It is hardly surprising that legislators, like
businessmen, collaborate with their nominal adversaries to eliminate
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FIGURE 3-15 Turnover and swing ratio

dangerous competition. Ironically, reapportionment rulings have given
incumbents new opportunities to construct secure districts for them-

10For example, Nelson W. Polsby, “The Institutionalization of the U.S. House
of Representatives,” American Political Science Review, 62 (March 1968), 144-68; and
David R. Mayhew, “Congressional Representation: Theory and Practice in Drawing
the Districts,” in Reapportionment in the 1970s, ed. N. Polsby, pp. 249-90.
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selves, leading to a reduction in turnover that is, in turn, reflected
in the sharply reduced swing ratio of the last few elections. One
apparent consequence is the remarkable change in the shape of the
distribution of congressional votes in recent elections. Prior to 1964,
the congressional vote by district was distributed the way everyone
expects votes to be distributed: a big clump of relatively competitive
districts in the middle, tailing off away from 50 percent with some
peaks at the ends of the distribution for districts without an opposition
candidate:

l
0% 50% 100%

Democratic share of vote
by congressional district

In recent elections the shape of the distribution of the vote by
district has changed; Figure 3-16 shows the movement of district
outcomes away from the danger area of 50 percent in recent years—
note the development of bimodality in the 1968 and 1970 district
vote compared to previous years (the left peak contains the Republican
safe seats; the right peak contains the Democratic safe seats). Perhaps
the best way to see how this pattern developed over time is to array
the vote distributions over the years and riffle through them—Ilike
an old-time peep show—and watch the middle of the distribution
sag and the areas of incumbent safety bulge in the more recent
elections.

Many states, in part through recent reapportionments, have practi-
cally eliminated political competition for congressional seats—even
compared to the relatively small proportion of competitive seats in
the past. In the 1970 elections in Michigan, for example, not one
of the 19 districts was a close contest; the most marginal Republican
victor won 56 percent of the vote and the most marginal Democrat
won fully 70% of the vote in his district. In Illinois, the most closely
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