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FIGURE 3-16 Distribution of congressional vote by district

contested race in all 24 congressional districts in 1970 was a 54-46
division of the vote; in contrast, in 1960, seven districts had closer
races than that. The closest 1970 race in Pennsylvania was 55-45;
in Ohio, 53-47.

In conclusion, then, we have seen here how the linear regression
model can be used to measure two important qualities of an electoral
system—the responsiveness and the partisan bias of the system. These
two measurements might even be used by the courts to evaluate
the fairness and the effectiveness of redistricting plans submitted
to the courts.

This example has shown the economy of the regression model, in
which the estimate of the slope takes us quickly to the central political
issues in the data. There was little to learn frem a correlation coefficient
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in this case (and in many others), for we already knew that there
was a strong relationship between how many votes and how many
seats a party received. In contrast to the correlation coefficient, the
regression model gave us a measure permitting politically meaningful
comparisons across different political systems. Note also that a corre-
lational analysis misses the method of assessing the partisan bias—an
estimate which flows naturally from the regression model. Finally,
look back at those four histograms in Figure 3-16. Note how informative
they are with respect to the performance of the electoral system and
how directly they make the point. Such is generally the case. Pictures
of the data—charts, scatterplots, histograms, or just the values of
a variable marked out on a line—are powerful aids to analysis. They
also are easy to produce, either by hand or by computer.

Example 5: Comparing the Slope and
the Correlation Coefficient

_ Both the correlation coefficient, r, and the slope of the fitted
line, B,, are numerical summaries of the relationship between two
variables. The slope, since it expresses the relationship in terms of
the units in which X and Y are measured, is often a more useful
summary measure than the correlation. This was true in the examples
dealing with midterm congressional elections and the translation of
votes into seats. In those examples the slope carried the important
message in the data. Such interpretations of the slope require, however,
that the units of measurement of the X and Y variables make some
sort of interpretative sense.

For example, in examining responses to an interview question-
naire—and correlating relationships over the different responses to
questions—it is difficult to interpret a measure of the rate of change
on the intensity of feeling on one question with respect to the intensity
of feeling on another. In such a case, the correlation coefficient may
be more appropriate.

John Tukey has expressed these views strongly:

. . . [M]ost correlation coefficients should never be calculated. . . .
[C]Jorrelation coefficients are justified in two and only two circum-
stances, when they are regression coefficients, or when measurement
of one or both variables on a determinate scale is hopeless. . . .
The other area in which correlation coefficients are prominent
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includes psychometrics and educational testing in general. This is
surely a situation where determinate scales are hopeless.!

The correlation coefficient, r, can be interpreted in a number of
ways. Its square, r? is the proportion of variance in the response
variable explained by the describing variakble. Or it can be viewed
as the average covariation of standardized variables:

1Y¥ /X.-X\/Y.-Y
2 () )
Ni=1 SX SY

That is, each observation is rescaled and measured in terms of how
many standard deviations it is from the mean—for a given observation
(X;, Y,:

The product of the rescaled variables is averaged over all observations
to yield the correlation coefficient.

Both the correlation coefficient and the slope can be dominated
by a few extreme values in the data. Since we are working with
products of deviations from the mean, a data point far from the mean
on both variables can virtually determine the value of r and B;.
Thus sometimes r and B, do not provide very good summaries of
the relationship between X and Y. They fail when the relationship
is nonlinear and when the data contain extreme outlying values.'?
The problems are easily detected from a scatterplot of the data. Thus
one practical moral is that every calculation of r and B, should also
involve an inspection of the scatterplot.

Let us now look at a series of scatterplots. First are examples in
which the data are well described by the linear model: the data are

11J. W. Tukey, “Causation, Regression, and Path Analysis,” in O. Kempthorne,
et al., eds., Statistics and Mathematics in Biology (Ames, Iowa: Iowa State College
Press, 1956), pp. 38-39.

12In the case of many nonlinear scatterplots, the data can be transformed
and the linear model estimated. Outliers can be treated by transformations, by removing
them from the analysis, or by “Winsorizing” them (setting the most extreme value
on a variable to the next most extreme). See Joseph B. Kruskal, “Special Problems
of Statistical Analysis: Transformations of Data,” International Encyclopedia of the
Social Sciences (New York: Macmillan, 1968), vol. 15, 182-93; and F. J. Anscombe,
“Outliers,” ibid., 178-82.
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roughly oriented around a straight line with no extreme outliers
(Figure 3-17).

We finally turn to some data sets for which the correlation and
the fitted line fail to summarize the data effectively. Figure 3-18
shows three scatterplots with widely divergent patterns of relationship
between X and Y. The first plot shows no relationship, discounting
the one extreme outlier on both measures. The second plot suggests
a moderately strong linear relationship between X and Y. The third
plot reveals a rather marked curvilinear relationship between X and
Y, revealing that as X increases, Y gets bigger even faster. Despite
the great variation in the visual message, the correlation between
X and Y is the same in all three cases. Also, the slopes do not differ
greatly in the three cases.

Often a set of data for which the linear model is not immediately
applicable can be transformed so the linear model is valuable. Or,
to put it the other way around: many models with nonlinearities
in the variables can be estimated by so-called “linear” regression.

For example, suppose we work with the logarithm of the one of
the variables and have the model

Y=8,+ B, log X.

This model is estimated by letting X' = log X and then performing
the usual least-squares regression for the model

Y=8,+8,X"

Thus the criticism sometimes made that linear regression “assumes
linearity” is a bit misleading, since the assumption can, in fact, be
checked—and, if false, the model then redesigned for purposes of
estimation. In fact, a better name for what this chapter has been
all about is “fitting curves to relationships between two variables.”

In summary, then, fitting lines to relationships between variables
is often a useful and powerful method of summarizing a set of data.
Regression analysis fits naturally with the development of causal
explanations, simply because the research worker must, at a minimum,
know what he or she is seeking to explain. The regression model
is surprisingly flexible; and we now illustrate methods that increase
its range of application.
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Ex

ample 6: Interpretation of Regression

Coefficients when the Variables are
Re-expressed as Logarithms (with Five

Ex

Da

amples)

ta that are counts of populations, vital statistics, census data,

and the like are almost always improved by taking logs. . . . Charles
Winsor frequently prescribed the taking of logs of all naturally
occurring counts (plus one, to handle that embarrassing quantity
zero) b;efore analyzing them—no matter what the sources [of the
data].!

Often the logarithm of a variable is taken before entering that

variable i

n a regression analysis. The logarithmic transformation

serves several purposes:

1.

The resulting regression coefficients sometimes have a more useful
theoretical interpretation compared to a regression based on
unlogged variables.

. Badly skewed distributions—in which many of the observations

are clustered together combined with a few outlying values on
the scale of measurement—are transformed by taking the loga-
rithm of the measurements so that the clustered values are spread
out and the large values pulled in more toward the middle of
the distribution.

. Some of the assumptions underlying the regression model and

the associated significance tests are better met when the logarithm
of the measured variables is taken.

REMEMBERING LOGARITHMS

The logarithm to the base b of a number x, written as log, x, is

the power to which the base must be raised to yield x. Thus
log ,, 1000 = 3, because 10% = 1000.
Similarly:
log,, 10,000 = 4, because 10* = 10,000.
log,, 1 =0, because 10° = 1.
log,, 2 = .30103, because 10319 = 2,
log,, 2000 = 3.30103,  because 10°3°1%® = 200.

log,, 20

,000 = 4.30103, because 10*3°1%% = 20,000.

In short, then, logarithms are powers of the base. The base 10,
the base e (which forms what are called “natural” logarithms), and

13Forman S. Acton, Analysis of Straight-Line Data (New York: Wiley, 1959),

p. 223.
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the base 2 are the ones most commonly used. Logs to the base 2
take the following form:

log, 8 = 3, because 23 = 8.

The logarithm of zero does not exist (regardless of the base) and
therefore must be avoided. In logging variables with some zero values
(especially those deriving from counts), the most common procedure
is to add one to all the observations of the variable.

Finally, we should recall the following rules for manipulation of
logarithms:

For x > 0 and y > 0:

log xy = log x + log y.
For example,

log 20,000 = log (2)(10,000)
log 2 + log 10,000
=.30103 + 4

= 4.30103.

Il

I

logi = log x — log y.
y
log x™ = nlog x.

Let us first look at the effect of taking logarithms on the measure-
ment scale of a single variable. Figure 3-19 shows the relationship
between Xand log X;and Table 3-6 (page 111) tabulates the populations
of some 29 countries of the world along with the logarithm of
population. Note how the logarithmic transformation pulls the ex-
tremely large values in toward the middle of the scale and spreads
the smaller values out in comparison to the original, unlogged values
of the variable. Although the transformation preserves the rank
ordering of the countries with respect to population, it still does produce
quite a major change in the scaling of the variable here: the correlation
between the population and the logarithm of population for the 29
countries is .68.

One reason for expressing population size here as a power of ten
(that is, logging size to the base ten) is simply for convenience: if
our scatterplots are going to include and differentiate between Iceland
and Norway as well as the United States and India, then something
must be done to compress the extreme end of the distribution. Logging
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(1,0)

FIGURE 3-19 X vs. log X

size transforms the original skewed distribution into a more symmetri-
cal one by pulling in the long right tail of the distribution toward
the mean. The short left tail is, in addition, stretched. The shift
toward symmetrical distribution produced by the log transform is
not, of course, merely for convenience. Symmetrical distributions,
especially those that resemble the normal distribution, fulfill statistical
assumptions that form the basis of statistical significance testing
in the regression model. Figure 3-20 shows the contrast between the
logged and unlogged frequency distributions of population.

Logging skewed variables also helps to reveal the patterns in the
data. Figure 3-21 shows the relationship between the population size
of a country and the size of its parliament—for the unlogged and
the logged variables. Note how the rescaling of the variables by taking
logarithms reduces the nonlinearity in the relationship and removes
much of the clutter resulting from the skewed distributions on both
variables; in short, the transformation helps clarify the relationship
between the two variables. It also, as we will see now, leads to a
theoretically meaningful regression coefficient.

Much of the value of the logarithmic transformation derives from
its contribution to the testing of theoretical models by means of linear
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TABLE 3-6
Population, 29 Countries, 1970

Country Population Log (Population)
Iceland 200,000 5.30
Luxembourg 400,000 5.60
Trinidad and Tobago 1,100,000 6.04
Costa Rica 1,800,000 6.25
Jamaica 2,000,000 6.30
New Zealand 2,800,000 6.45
Lebanon 2,800,000 6.45
Israel 2,900,000 6.46
Uruguay 2,900,000 6.46
Ireland 3,000,000 6.48
Norway 3,900,000 6.59
Finland 4,700,000 6.67
Denmark 4,900,000 6.69
Switzerland 6,300,000 6.80
Austria 7,400,000 6.87
Sweden 8,000,000 6.90
Belgium 9,700,000 6.99
Chile 9,800,000 6.99
Australia 12,500,000 7.10
Netherlands 13,000,000 7.11
Canada 21,400,000 7.33
Philippines 38,100,000 7.58
France 51,100,000 7.71
Italy 53,700,000 7.73
United Kingdom 56,000,000 7.75
West Germany 58,500,000 7.77
Japan 103,500,000 8.02
United States 204,600,000 8.31
India 554,600,000 8.74

regression.'* In interpreting regression coefficients of such models
when the variables are logged, we have the following possibilities:

Describing variable (X)

Response variable (Y)

Logged Not logged
Logged I II
Not logged III v

14 For further information see J. Johnston, Econometric Methods, 2d ed. (New
York: McGraw-Hill, 1972), chap. 3; N. R. Draper and H. Smith, Applied Regression
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FIGURE 3-20 Logged vs. unlogged frequency distributions

Analysis (New York: Wiley, 1966); J. W. Richards, Interpretation of Technical Data
(New York: Van Nostrand-Reinhold, 1967); and Joseph B. Kruskal, op. cit. For
applications to political data see Hayward Alker and Bruce Russett, “Multifactor
Explanations of Social Change,” in Russett et al., World Handbook of Political and
Social Indicators (New Haven, Conn.: Yale, 1964), 311-21.
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Case IV is simply the usual two-variable regression model with
both variables unlogged. We now consider the three cases in which
at least one of the variables in the analysis is logged.

CASE I—BOTH THE DESCRIBING AND THE RESPONSE
VARIABLE LOGGED

In the model
log Y=8,log X+ B,,

we estimate B, and B, by ordinary least squares by letting X' =
log X and Y’ = log Y, which yields the linear form

Y =B, X' +B,.

How is the regression coefficient in the double-log case interpreted?
Beginning with the regression

log,, Y = B,log,,X + B,

600
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FIGURE 3-21b Relationship between parliamentary size (log) and
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and taking derivatives,

dY 1 1 e 10 =B (og.10) = + 0
day 1 — 8. (log.10) = + 0,
Xy ‘8- 110082 %

e ATE

yieldas dXY_ 1
dY/Y

B, =
dX/X

, which is the elasticity of Y with respect to X.

Thus B, measures the percentage change in Y with respect to a
percentage change in X. The slope can be written approximately as
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_AY/Y
1T AX/X

and, when both the describing and the response variables are logged,
the estimate of the slope assesses the proportionate change in Y
resulting from a proportionate change in X. Note how this differs
from the usual interpretation of the slope when both variables are
unlogged (case IV):

_AY
Bi=7x

It is important to realize that fitting the model
log Y=p8,log X+ B,,

does not test the assumption that there is, in fact, a proportionate
relationship between X and Y. The logic is: Assuming that there is
a proportionate relationship between X and Y,what is the best estimate
of that proportionality or elasticity? Thus the regression answers the
quantitative question by estimating a parameter in a model—on the
assumption that the model is correct. We choose between competing
models by comparing their goodness of fit, by thinking about their
theoretical underpinnings, and by adding sufficient degrees of freedom
in the model to allow the data to indicate the best fit. Our first
example illustrates this point.

EXAMPLE 1 FOR THE LOG-LOG CASE: RELATIONSHIP
BETWEEN PARLIAMENTARY SIZE AND POPULATION SIZE

Figure 3-22 shows the relationship, with both variables logged,
between the population of a country and the size of its parliament
for 135 countries of the world.'® This relationship appears nearly
linear in logarithms, and the fitted line is

log ,, members = .396 log,, population — .564,

which explains, statistically at least, some 70.7 percent of the variation

15 A discussion of the substantive issues involved in this relationship is found
in Robert A. Dahl and Edward R. Tufte, Size and Democracy (Stanford, Calif.: Stanford
University Press, 1973), Ch. 7.
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FIGURE 3-22 Population vs. parliament size—both variables logged

in parliamentary size. The estimated slope, .396, indicates that if
a country was one percent above the average population of all countries,
it was also typically about .4 percent above average with respect
to size of parliament. A slightly more daring interpretation is to
say that a change of one percent in population typically produces
a change of .4 percent in parliamentary size.

Figure 3-22 and the residuals from the fitted line show a bend
in the data—there is something of a threshold in the size of parliament
for the smaller countries. For most of the countries with less than
one million people, the observed points lie above the fitted line,
indicating a tendency toward a minimum size of parliament around
thirty members. We can improve upon the first fitted line for the
135 countries by examining some models that avoid the assumption
of constant elasticity for all values of population (P) and take the
bend in the data into account. One good approach, upon observing
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FIGURE 3-23 Fitted line with quadratic term

a curve in the data, is to introduce a quadratic term. The following
fit, with its (log P)? term, is our second model:

log M = .031(log P)? + .667.

Figure 3-23 shows the fit. This regression predicts 73.1 percent of
the variation in the logarithm of parliamentary size—an improvement
of 2.4 percentage points over the first model with no increase in
the number of coefficients used in the model. What is the interpretation
of this result? In particular, what does the regression coefficient mean?
We get the answer by applying the same logic used in deriving the
elasticity in the log-log case. The model is

log,, M= B, + B,(og,, P)*.

Taking derivatives, as before,
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dM 1 1
P M log, 10 = 2B, (log, 10)(log ,, P) B’

which yields

dM P L .
—— — = elasticity of M with respect to P
dP M

= 2B, log,, P,
or, in our particular case,
= .062 log,, P.

Thus in this model the elasticity of M with respect to P is a slowly
increasing function of log P. For countries around 100,000, the
elasticity of parliamentary size with respect to population is about
.3; for countries of 100,000,000, it is nearly .5. Table 3-7 tabulates
the relationship.

TABLE 3-7
Predictions of the Second Model

Elasticity of M with

Population Log population respect to P = .062 log ,, P
10,000 4 .248
100,000 5 .310
1,000,000 6 372
10,000,000 7 434
100,000,000 8 .496
750,000,000 8.875 .550

The first model assumes that the elasticity is constant and provides
an estimate under that untested assumption. The second model
assumes that the elasticity varies as the population varies and provides
an estimate under that untested assumption. The second is now favored
because (1) visual inspection of the scatterplot and the residuals shows
a bend in the data and (2) the second explains more variance than
the first, even though both models estimate the same number of
coefficients.
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EXAMPLE 2 FOR THE LOG-LOG CASE: SIZE OF GOVERNMENTAL
BUREAUCRACY AND POPULATION SIZE

For the fifty U.S. states, let B = the number of employees of the
state government and let P = the number of people living in the
state. Both P and B are highly skewed variables, and so we will
work with log P and log B. Figure 3-24 shows log B plotted against
log P.

Three sorts of general results could emerge from this analysis:
(1) if a kind of Parkinson’s Law held, then we would expect the
bureaucracies of state governments to grow faster than the size of
the state; (2) if there were, say, economies of scale, then we would
expect bureaucracies to grow more slowly than the population of the
state; and (3) the number of bureaucrats could grow in constant
proportion to the size of the state. Obviously, other sorts of explanations
can be used to explain the results of the analysis. The point here
is that the number of employees of the state government can grow

.
log 8= .772 log P+ .282
Standard error of slope = .025
r2=,953
5.00
(100,000)
4,50
4.00
(10,000)
| 1 | | |
5.50 6.00 6.50 7.00 7.50
(1,000, 000) (10,000, 000)

Population (log scale)

FIGURE 3-24 Population and state government employees
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faster, slower, or at the same rate as the number of citizens in the

state.
The model that helps to choose among these possibilities is

log B=B,log P+ B,

or letting B, = log ¢ and taking antilogs puts the model in terms
of the untransformed variables:

B = cPP.

If B, is approximately one, then B approximately equals cP, which
says that B grows linearly in direct proportion as P grows. In this
case, there is support for what might loosely be called the “null
hypothesis” concerning the relationship between size and the depen-
dent variable. An example where B, would be very close to one and
the null hypothesis accepted would be the relationship between the

Number of employees

Population

@ B grows faster than P
@ B grows proportionally to P
@ B grows more slowly than P

FIGURE 3-25 Three types of relationships between B and P
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size of the population and the number of women in the population.
In this case, given the sex ratio, ¢ would be about .52.

In terms of the untransformed variables, if the estimated regression
coefficient is greater than one, the slope increases as P increases.
If B, lies between zero and one, the slope continually decreases. Figure
3-25 shows this result in a plot of the untransformed variables.

For the fifty states, we have the following results:

log B = .772 log P + .282,
Elasticity = B, = .772,
Standard error of elasticity = .025, r? = .953.

Figure 3-24 shows the fitted curve.

The estimated elasticity is less than unity, indicating that the
number of government employees grows somewhat more slowly than
population. A change of one percent in the size of the population
of a state is associated with a change of .772 percent in the number
of government employees.

Note that the correlation coefficient is virtually useless in this
problem. The square of the correlation provides a measure of the
goodness of fit; but what is important is the estimate of the slope.

EXAMPLE 3 FOR THE LOG-LOG CASE: TESTING THE “CUBE LAW”
RELATING SEATS AND VOTES WITH A LOGIT MODEL

One well-known description of the relationship between votes and
seats in two-party systems is the “cube law.”'® The most economical
statement of the law is that the cube of the vote odds equals the
seat odds, where the vote odds are the ratio of the share of the votes
received by one party divided by the share of the votes received by
the competing party. For example, if both parties win 50 percent
of the votes, then the odds are one to one. Figure 3-26 shows the
line traced out by the cube law.

Quite a number of papers have touched upon the law and, in the
last few years, the law has enjoyed a certain vogue and has been
fitted to electoral outcomes in England, the United States, New
Zealand, and, in a modified form, Canada. With one or two exceptions,
discussions of the law are quite sympathetic, suggesting that it is

16This discussion follows E. R. Tufte, “The Relationship Between Seats and
Votes in Two-Party Systems,” American Political Science Review, 68 (June 1973), 540-54.

Additional discussion of the paper is found in the American Political Science Review,
68 (March, 1974), 207-13.
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source: Figure follows James G. March, “Party Representation as

a Function of Election Results,” Public Opinion Quarterly,
11 (Winter 1957-58), p. 524.

a useful and accurate description of electoral realities. Most studies
consider no more than a few data points and conclude that the law
fits rather well—although the quality of fit is usually assessed
informally and no alternative fits are tried. Let us consider a direct
test of the predictions of the cube law by using the log-log model.

The law is

S _( 1% )3
1-8§ \1-vVv/~
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The ratio of shares of seats and votes won by the two parties represents
the odds that a party will win a seat or a vote. Taking logarithms
yields

S
log, —— =31 ,
Bl g %1 vy

and therefore in the regression of log-odds on seats against log-odds
on votes,

S
log, 7= = Bo * By log,

1-V’
the cube law makes the simultaneous joint prediction that B, = 0
and B, = 3. Table 3-8 reports the results of tests of these predictions.

The table indicates that the cube law fits poorly in six of the seven
trials. It fits quite well for the last eight elections in Great Britain,
but otherwise its predictions are not confirmed. In short, it is not
a “law.” Since previous studies have not tested the exact joint
predictions of the cube law (that is, B, = 0 and B, = 3) or used
as extensive a collection of data, these results should be decisive
in evaluating the empirical merits of the cube law.

Our previous analysis of seats and votes (Example 4) points to
other defects in the cube law. The law hides important political issues
because it implies that the translation of votes into seats is (1)
unvarying over place and time, and (2) always “fair,” in the sense
that the curve traced out by the law passes through the point (50
percent votes, 50 percent seats), and the bias is zero.

As we have seen, these implications are not true. The rate of
translation of votes into seats differs greatly across political systems,
ranging between gains of 1.3 to 3.7 percent in seats for each 1.0
percent gain in votes. Also the results in Table 3-8 indicate that
some electoral systems persistently favor a particular party; the
votes-seats curve traced out by the data does not inevitably pass
close by the point (50 percent votes, 50 percent seats).

The model estimated in the test of the cube law is called a “logit
model.” Define the odds in favor of a party winning a seat as S/(1
— S) and the vote odds as V/(1 — V). The logit model is the regression
of the logarithm of seat odds against the logarithm of vote odds (a
regression used earlier to test the specific predictions of the cube
law):
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TABLE 3-8
Testing the Predictions of the Cube Law (and Simultaneously Estimating
the Logit Model)

Stan- Does B, = 0
dard andB, =3 IsB,# O; that is,
R . errorof as cube is there a sig-
B, B, slope r? law predicts? nificant bias?
Great Britain —.02 2.88 .30 94 Yes No bias
New Zealand —-.12 231 .27 91 No Yes, there
is a bias
United States, .09 2.52 .24 .68 No Yes
1868-1970
United States, .17 2.20 .15 .86 No Yes
1900-1970
Michigan —-.17 219 43 .76 No Yes
New Jersey —.77 2.09 .59 .29 No Yes
New York -.23 133 .19 .74 No Yes

S

log, 775 = Bo + By log, T
Since both variables are logged, the estimate of the slope, Bl, is
the estimated elasticity of seat odds with respect to vote odds; that
is, a change of one percent in the vote odds is associated with a
change of Bl percent in seat odds.

The logit model has the advantage over the linear fit used in Example
4 of producing a reasonable predicted value for the share of seats
for all logically possible values of the share of votes; the predicted
values stay between 0 and 100 percent seats for any percentage share
of votes. As noted earlier, this is only a theoretical virtue, since the
more extreme values do not occur empirically. The logit model also
provides a direct test of the hypothesis that an electoral system is
unbiased, since B, = 0 in an unbiased system. As shown in Table
3-8, there is a statistically significant bias in all cases except Great
Britain.

CASE II—RESPONSE VARIABLE LOGGED, DESCRIBING
VARIABLE NOT LOGGED

Here we have the model of the form

log Y=8,+B,X.
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One particularly interesting application of such a model derives from
the exponential:

Y = ae®*.

Taking natural logarithms and letting ¢ = log, a puts this model
into the form of case II:

log, Y=rc + bX.

This exponential model can be estimated by ordinary least squares,
and the regression coefficient has the following interpretation:

In the model Y = ae®®, b x 100 is approximately equal
to the percent increase in Y per unit increase in X, if b is
small (say, less than .25).

The proof of this statement relies on the series expansion of e*:
Percent increase in Y per unit increase in X
AY

Y
AX

Y,- Y, .

=———— (sinceAX=X,-X,=1)
Yl

aebX2 _ aebxl

aebxl

= o®Xx-bX1) _ 1

=e’—1 (sinceX,—-X,=1)

Il

1 1
[1+b+—=0b2+—=0b3+..] -1,
2! 3!

by the expansion of e’ So, if bis small, we can drop the higher-order
terms, leaving

X(1+b)—-1=0b.



126 TWO-VARIABLE LINEAR REGRESSION

Thus b X 100 equals the percent increase in Y associated with a
unit increase in X.'”

The logarithm of the response variable is used in estimating rates
of increase over time. Table 3-9 shows the gross national product
of Japan from 1961 to 1970. Note the increasing absolute increase
in GNP growth—GNP (the yearly absolute increase) itself increases
over time. One process generating such increasing increases is a
constant percentage growth rate—just like compound interest. What
is the appropriate model for a constant percentage growth rate?
Consider compound interest, at i percent per year. Beginning the
first year with principal P, leads to principal P, after t years:

P,=P,(1+ )"
For example, after one year:
P,=P,1+ ).
After two years
P,=P,(1+1)
= P,(1 +i)?,
and so on. To put this into slightly more familiar notation:
Y,=Y,1+ )"

Taking the logarithm of both sides

log Y,=1log[Y,(1+ i)*],
log Y,=1log Y, + log(1 + i),

log Y, =log Y, + tlog(1 + i).

17An application of this interpretation is found in Philip E. Sartwell and
Charles Anello, “Trends in Mortality from Thromboembolic Disorders,” in Advisory
Committee on Obstetrics and Gynecology, Food and Drug Administration, Second Report
on the Oral Contraceptives (Washington, D.C.: U.S. Government Printing Office, 1969),
37-39.
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Now let
Bo=log Y,
B, =log(1l + i),

and we have the model

log Y,=B, + Bt

—that is, case II. The model is estimated by letting Y = log Y,,
yielding

Y:BO+ B.t,

the usual linear model.

Figure 3-27 shows the GNP of Japan plotted on both an absolute
scale and a logarithmic scale. Note how, for these data, the log scale
throws the data points into a straight line. The changes in the logarithm
of GNP are relatively constant (Table 3-9), indicating a relatively
constant percentage rate of growth over time. The line for log GNP
fits considerably better than the line for absolute GNP—as the r?
shows. The fitted line for the logarithmic case is

log,, GNP = 1.627 + .064¢.

The rate of growth, i, can be estimated by going back to the original
linearization of the model,

B, = log(l + i),
and solving by taking antilogarithms. This yields

i =.159,

or a growth rate of almost 16 percent per year.'®
This is the yearly rate of growth. An instantaneous rate of growth
can be estimated by fitting the model

18Unfortunately the estimate, i, is biased. It does not have least-squares
properties because the sum of squares was minimized with respect to log GNP rather
than GNP over time.
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GNP =19.40 + 15.58 ¢ Log,, GNP =1.627 + 0.064 7
r2=0.923 r2=0.982

FIGURE 3-27 Growth of GNP, Japan, 1961-1970

log, Y= B, + B,t.
Differentiating gives

_dY/Y
Bl‘ dt

)

the percentage rate of growth in Y.

Finally, a growth rate can be estimated quite soundly without the
regression model, simply by taking the average (mean, median, or
midmean) of the yearly growth rates, or the average of the logarithm.

CASE III—RESPONSE VARIABLE UNLOGGED, DESCRIBING
VARIABLE LOGGED

The model is

Y=8,+B,;log X.
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TABLE 3-9
Gross National Product, Japan, 1961-1970

GNP Yearly increase Yearly increase
Year t ($ Billion) in GNP log,, GNP in log,, GNP
1961 1 53 1.72
6 .05
1962 2 59 1.77
9 .06
1963 3 68 1.83
0 .00
1964 4 68 1.83
17 .10
1965 5 85 1.93
12 .06
1966 6 97 1.99
19 .07
1967 7 116 2.06
26 .09
1968 8 142 2.15
24 .07
1969 9 166 2.22
31 .08
1970 10 197 2.30

If the logarithm of the describing variable is taken to the base 10,
the regression indicates that a change in the order of magnitude
of X—that is, a tenfold increase in X—is associated with a change
of B, units in Y.

Sometimes it is useful to take the logarithm to the base 2 in this
model. In such a case, the regression coefficient estimates the increase
in Y when X doubles. And so when X is measured with respect to
time, the estimate of the regression coefficient may be said to assess
the “doubling time” of Y with respect to X. It is easy to prove that
when X doubles, Y increases by B, units. The model is

Y = B,+B;log,X.

Now suppose X doubles:

Y

new

Bo+ B;log,2X

Bo + B,(og,2 + log, X)

Bo + B, log, X+ B,

= Y+ 8,
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—that is, the value of Y after X doubles is the old value of Y plus
B,. Thus Y increases by B, units when X doubles.

Consider the following application of this model. Kelley and Mirer
have developed a rule predicting how voters will vote; the predictions
are made on the basis of an interview with the voter D days before
the election. After the election, the voter is reinterviewed and asked
how he or she voted. Thus it is possible to find the rate of error
in prediction—and such errors might well be related to how many
days before the election the voter was interviewed. If D were 1000
days, to take an extreme example, the error rate in prediction would
be higher than if D were one day. The researchers analyzed the data
first with a linear model, then with a logarithmic model:

A simple linear regression of the first of these variables on the
second shows them to be strongly related. The equation yielded is:

rate of error = 17.4 + .23(days before election).

In a statistical sense this relationship explains some 28 percent
of the variance in the dependent variable, and, since the standard
error of the estimated coefficient is .07, the relationship is statistically
significant (t = 3.15). Most interesting, perhaps, is the implication
of the equation’s constant term: Had the interviews of these respon-
dents been conducted on election day, the mean rate of error in
predicting their votes would have been 17.4 percent. . . .

And it is quite possible that this value for the constant term is
too high. The volume of partisan propaganda is normally much heavier
in the last two or three weeks of a presidential campaign than it
is earlier. We might therefore suppose the relationship between time
and changes of opinion to be like that shown in Figure [3-28], in
which the likelihood of such changes (and thus the error rates of
our predictions) at first increases rapidly with increases in the number
of days between election day and the time the opinions were expressed,
then more slowly. By regressing the rates of error in our predictions
for groups of respondents on the logarithm (to the base 2) of the
mean number of days before election day that the respondents in
each group were interviewed, one can see if a curve like that shown
in Figure [3-28] fits the data that entered into the first regression.
The equation produced by this new regression is:

rate of error = 5.3 + 4.03(log, days before election).

This second equation accounts for as much of the variance in the
dependent variable as did the first and yields an equally reliable
estimate of the regression coefficient (r® = .28, t = 3.14). The value
of the equation’s constant term implies that our mean rate of error
in predicting the votes of groups of respondents would have been
5.3 percent . . . if those respondents had been interviewed one day
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Probability of changes of opinion
N
[+
T

! | I 1 | 1 ]
0 7 14 21 28 35 42 49

Days before election day

FIGURE 3-28 Hypothetical relationship between the likelihood that
opinions will change and the time that attitudes toward
parties and candidates are expressed

before election day. The equation as a whole implies that, starting
from the day before the election, the error rate in predictions derived
from the Rule will rise by four percentage points with each doubling
of the length of time before election day that respondents are
interviewed.®

Example 7: Regressions Aren’t Enough—
Looking at the Scatterplot

F. J. Anscombe has constructed a nice set of numbers illustrating
why it is important to look at scatterplots along with the fitted
equation.”® Table 3-10 shows four sets of data. Their remarkable
property is that all four yield exactly the same result when a linear
model is fitted. The regression in all four cases is:

Y=30+.5X

r? = 667, estimated standard error of B, = 0.118,

19Stanley Kelley, Jr., and Thad W. Mirer, “The Simple Act of Voting,”
American Political Science Review, 68 (June 1974), pp. 582-83.

20F. J. Anscombe, “Graphs in Statistical Analysis,” American Statistician,
27 (February 1973), 17-21. Copyright 1973 by the American Statistical Association.
Reprinted by permission.
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TABLE 3-10
Four Data Sets

DATA SET 1 DATA SET 2
X Y X Y
10.0 8.04 10.0 9.14
8.0 6.95 8.0 8.14
13.0 7.58 13.0 8.74
9.0 8.81 9.0 8.77
11.0 8.33 11.0 9.26
14.0 9.96 14.0 8.10
6.0 7.24 6.0 6.13
4.0 4.26 4.0 3.10
12.0 10.84 12.0 9.13
7.0 4.82 7.0 7.26
5.0 5.68 5.0 4.74
DATA SET 3 DATA SET 4
X Y X Y
10.0 7.46 8.0 6.58
8.0 6.77 8.0 5.76
13.0 12.74 8.0 7.71
9.0 7.11 8.0 8.84
11.0 7.81 8.0 8.47
14.0 8.84 8.0 7.04
6.0 6.08 8.0 5.25
4.0 5.39 19.0 12.50
12.0 8.15 8.0 5.56
7.0 6.42 8.0 7.91
5.0 5.73 8.0 6.89

sourck: F. J. Anscombe, op. cit.

mean of X = 9.0,

mean of Y = 7.5, for all four data sets.

And yet the four situations—although numerically equivalent in major
respects—are substantively very different. Figure 3-29 shows how
very different the four data sets actually are.

Anscombe has emphasized the importance of visual displays in
statistical analysis:

Most textbooks on statistical methods, and most statistical computer
programs, pay too little attention to graphs. Few of us escape being
indoctrinated with these notions:
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FIGURE 3-29 Scatterplots for the four data sets of Table 3-10
sourck: F. J. Anscombe, op cit.

(1) numerical calculations are exact, but graphs are rough;

(2) for any particular kind of statistical data there is just one
set of calculations constituting a correct statistical analysis;

(3) performing intricate calculations is virtuous, whereas actually
looking at the data is cheating.

A computer should make both calculations and graphs. Both sorts
of output should be studied; each will contribute to understanding.

Graphs can have various purposes, such as: (i) to help us perceive
and appreciate some broad features of the data, (ii) to let us look
behind those broad features and see what else is there. Most kinds
of statistical calculation rest on assumptions about the behavior of
the data. Those assumptions may be false, and then the calculations
may be misleading. We ought always to try to check whether the
assumptions are reasonably correct; and if they are wrong we ought
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to be able to perceive in what ways they are wrong. Graphs are
very valuable for these purposes.?!

Up until now we have considered only one-variable explanations
of the response variable. But the world is surely often more complicated
than that and response variables have more than a single cause.
In the next chapter, we examine the multiple regression model which

allows us to take into account effectively several explanatory varia-
bles—at least some of the time.

21 Anscombe, op. cit., p. 17.
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